Une formule variationnelle pour des fonctionnelles positives d'une mesure de Poisson aléatoire et d'un mouvement brownien est démontrée. Cette formule provient de la représentation des intégrales exponentielles par l'entropie relative, et peut être utilisée pour obtenir des estimées de grandes déviations. Un résultat de grandes déviations général est démontré.
A variational formula for positive functionals of a Poisson random measure and brownian motion is proved. The formula is based on the relative entropy representation for exponential integrals, and can be used to prove large deviation type estimates. A general large deviation result is proved, and illustrated with an example.
@article{AIHPB_2011__47_3_725_0, author = {Budhiraja, Amarjit and Dupuis, Paul and Maroulas, Vasileios}, title = {Variational representations for continuous time processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {725-747}, doi = {10.1214/10-AIHP382}, mrnumber = {2841073}, zbl = {1231.60018}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_3_725_0} }
Budhiraja, Amarjit; Dupuis, Paul; Maroulas, Vasileios. Variational representations for continuous time processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 725-747. doi : 10.1214/10-AIHP382. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_3_725_0/
[1] Large deviation principle and inviscid shell models. Electron. J. Probab. (2009) 14 2551-2579. | MR 2570011 | Zbl 1191.60074
and .[2] A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998) 1641-1659. | MR 1675051 | Zbl 0936.60059
and .[3] Large deviations for small noise diffusions with discontinuous statistics. Probab. Theory Related Fields 116 (2000) 125-149. | MR 1736592 | Zbl 0949.60046
, and .[4] A variational representation for positive functional of infinite dimensional Brownian motions. Probab. Math. Statist. 20 (2000) 39-61. | MR 1785237 | Zbl 0994.60028
and .[5] Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. To appear.
, and .[6] Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36 (2008) 1390-1420. | MR 2435853 | Zbl 1155.60024
, and .[7] Large deviations for stochastic flows of diffeomorphisms. Bernoulli 36 (2010) 234-257. | MR 2648756 | Zbl pre05815970
, and .[8] Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl. Math. Optim. 61 (2010) 379-420. | MR 2609596 | Zbl 1196.49019
and .[9] Small probability events for two-layer geophysical flows under uncertainty. Preprint.
, and .[10] Large deviations for the Boussinesq equations under random influences. Stochastic Process. Appl. 119 (2009) 2052-2081. | MR 2519356 | Zbl 1163.60315
and .[11] A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997. | MR 1431744 | Zbl 0904.60001
and .[12] Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR 637061 | Zbl 0684.60040
and .[13] A general theorem of representation for martingales. In Proceedings of Symposia in Pure Mathematics 31 37-53. Amer. Math. Soc., Providence, RI, 1977. | MR 443074 | Zbl 0362.60068
.[14] Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. | MR 959133 | Zbl 1018.60002
and .[15] Numerical methods for stochastic control problems in continuous time. SIAM J. Control Optim. 28 (1990) 999-1048. | MR 1064717 | Zbl 0721.93087
.[16] Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition. Springer, New York, 2001. | MR 1800098 | Zbl 0754.65068
and .[17] Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61 (2010) 27-56. | MR 2575313 | Zbl pre05774268
.[18] Large deviations for the stochastic shell model of turbulence. Nonlinear Differential Equations Appl. 16 (2009) 493-521. | MR 2525514 | Zbl 1180.60023
, and .[19] Freidlin-Wentzell's large deviations for homeomorphism flows of non-Lipschitz SDEs. Bull. Sci. Math. 129 (2005) 643-655. | MR 2166732 | Zbl 1086.60036
and .[20] Schilder theorem for the Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 224 (2005) 107-133. | MR 2139106 | Zbl 1080.60024
and .[21] Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim. 61 (2010) 267-285. | MR 2585144 | Zbl 1195.60093
, and .[22] Real Analysis. Prentice Hall, Englewood Cliffs, NJ, 1988. | MR 928805 | Zbl 1191.26002
.[23] Large deviations for the two dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006) 1636-1659. | MR 2269220 | Zbl 1117.60064
and .[24] Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions. Stoch. Anal. Appl. 27 (2009) 431-459. | MR 2523176 | Zbl 1166.60038
and .[25] Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise. Phys. D 237 (2008) 82-91. | MR 2450925 | Zbl 1172.60018
and .[26] Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differential Equations 244 (2008) 2226-2250. | MR 2413840 | Zbl 1139.60329
.[27] A variational representation for random functionals on abstract Wiener spaces. J. Math. Kyoto Univ. 9 (2009) 475-490. | MR 2583599 | Zbl 1194.60037
.[28] Clark-Ocone formula and variational representation for Poisson functionals. Ann. Probab. 37 (2009) 506-529. | MR 2510015 | Zbl 1179.60037
.[29] Stochastic Volterra equations in Banach spaces and stochastic partial differential equations. J. Funct. Anal. 258 (2010) 1361-1425. | MR 2565842 | Zbl 1189.60124
.