Dans cet article nous étudions l'existence et la régularité des solutions d'un problème de Neumann associé à un opérateur de Ornstein-Uhlenbeck défini sur un domaine convexe K, borné et régulier dans un espace de Hilbert H. Le problème est lié à un problème de réflexion associé à une équation différentielle stochastique dans le domaine K.
This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a Ornstein-Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H. This problem is related to the reflection problem associated with a stochastic differential equation in K.
@article{AIHPB_2011__47_3_699_0, author = {Barbu, Viorel and Da Prato, Giuseppe and Tubaro, Luciano}, title = {Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {699-724}, doi = {10.1214/10-AIHP381}, mrnumber = {2841072}, zbl = {1230.60081}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_3_699_0} }
Barbu, Viorel; Da Prato, Giuseppe; Tubaro, Luciano. Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 699-724. doi : 10.1214/10-AIHP381. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_3_699_0/
[1] Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Related Fields. 145 (2009) 517-564. | MR 2529438 | Zbl pre05607262
, and .[2] The Neumann problem on unbounded domains of ℝd and stochastic variational inequalities. Comm. PDE 30 (2005) 1217-1248. | MR 2180301 | Zbl 1130.35137
and .[3] The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. PDE 33 (2008) 1318-1338. | MR 2450160 | Zbl 1155.60034
and .[4] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37 (2009) 1427-1458. | MR 2546750 | Zbl 1205.60141
, and .[5] Gaussian Measures. Mathematical Surveys and Monographs 62. Amer. Math. Soc., Providence, RI, 1998. | MR 1642391 | Zbl 0913.60035
.[6] Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. | MR 1626174 | Zbl 0937.34046
.[7] Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel, 2004. | MR 2111320 | Zbl 1066.60061
.[8] Elliptic operators with unbounded drift-coefficients and Neumann boundary condition. J. Differential Equations 198 (2004) 35-52. | MR 2037749 | Zbl 1046.35025
and .[9] Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes 229. Cambridge Univ. Press, 1996. | MR 1417491 | Zbl 0849.60052
and .[10] Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Notes 293. Cambridge Univ. Press, 2002. | MR 1985790 | Zbl 1012.35001
and .[11] Gaussian surface measures and the Radon transform on separable Banach spaces. In Measure Theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979) 513-531. Lecture Notes in Math. 794. Springer, Berlin, 1980. | MR 577995 | Zbl 0431.28011
.[12] Stochastic Analysis. Springer, Berlin, 1997. | MR 1450093 | Zbl 0878.60001
.[13] Tightness criteria for laws of semimartingales. Ann. Inst. H. Poincaré 20 (1984) 353-372. | Numdam | MR 771895 | Zbl 0551.60046
and .[14] White noise driven by quasilinear SPDE's with reflection. Probab. Theory Related Fields 93 (1992) 77-89. | MR 1172940 | Zbl 0767.60055
and .[15] Integration in Hilbert Space. Springer, New York, 1974. | MR 466482
.[16] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 (2002) 579-600. | MR 1921014 | Zbl 1009.60047
.