Étant donnée une fonction croissante f(t), t≥0, considérons la mesure μt obtenue lorsqu'on on conditionne un mouvement brownien de sorte que Ls≤f(s), pour tout s≤t, où Ls est le temps local accumulé au temps s à l'origine. Nous montrons que les mesures μt sont tendues, et que toute limite faible de μt lorsque t→∞ est la loi d'un processus transient si t-3/2f(t) est intégrable. Nous conjecturons que cette condition est également nécessaire pour la transience et proposons un certain nombre de questions ouvertes.
We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t-3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems.
@article{AIHPB_2011__47_2_539_0, author = {Benjamini, Itai and Berestycki, Nathana\"el}, title = {An integral test for the transience of a brownian path with limited local time}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {539-558}, doi = {10.1214/10-AIHP371}, mrnumber = {2814422}, zbl = {1216.60028}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_2_539_0} }
Benjamini, Itai; Berestycki, Nathanaël. An integral test for the transience of a brownian path with limited local time. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 539-558. doi : 10.1214/10-AIHP371. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_2_539_0/
[1] Brownian motion at a slow point. Trans. Amer. Math. Soc. 296 (1986) 741-775. | MR 846605 | Zbl 0602.60041
and .[2] Random paths with bounded local time. J. Eur. Math. Soc. 12 (2010) 819-854. | MR 2654081 | Zbl 1202.60131
and .[3] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201
.[4] Probability: Theory and Examples, 3rd edition. Duxbury Press, Belmont, CA, 2004. | MR 2722836 | Zbl 0709.60002
.[5] An Introduction to Probability Theory and its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0138.10207
.[6] A survey of one-dimensional polymers. J. Stat. Phys. 103 (2001) 915-944. | MR 1851362 | Zbl 1126.82313
and .[7] Stochastic Differential Equations and Diffusion Processes. North-Holland-Kodansha, Amsterdam and Tokyo, 1981. | MR 637061 | Zbl 0684.60040
and .[8] Construction of an Edwards' probability measure on C(ℝ+, ℝ). Ann. Probab. (2010). To appear. Preprint. Available at arXiv:0801.2751. | MR 2683631 | Zbl pre05817049
.[9] The SDE solved by local times of a Brownian excursion or bridge derived from height profile of a random tree or forest. Ann. Probab. 27 (1999) 261-283. | MR 1681110 | Zbl 0954.60060
.[10] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .[11] Diffusions, Markov Processes and Martingales, Vol. 2, 2nd edition. Cambridge Univ. Press, Cambridge, 2000. | MR 1780932 | Zbl 0949.60003
and .[12] Some penalisations of the Wiener measure. Japan. J. Math. 1 (2006) 263-290. | MR 2261065 | Zbl 1160.60315
, and .[13] Penalising Brownian Paths: Rigorous Results and Meta-Theorems. Lecture Notes in Math. 1969. Springer, Berlin, 2009. | MR 2504013 | Zbl 1190.60002
and .[14] Local Times and Excursions for Brownian Motion: A Concise Introduction. Lecciones en Matematicas 1. Universidad Central de Venezuela, Caracas, 1995.
.