La question suivante a été posée par Marc Yor: Soit B un mouvement Brownien et St=t+Bt. Peut-on définir un processus H qui est -prévisible tel que l'intégrale stochastique (H⋅S) soit un mouvement Brownien (sans drift) pour sa propre filtration ? Dans cet article nous fournissons une réponse affirmative en relâchant la condition que H soit -prévisible. Autrement dit, nous montrons qu'il existe une solution faible pour cette question de Yor. La question originale (c'est à dire, l'existence d'une solution forte) reste ouverte.
The following question is due to Marc Yor: Let B be a brownian motion and St=t+Bt. Can we define an -predictable process H such that the resulting stochastic integral (H⋅S) is a brownian motion (without drift) in its own filtration, i.e. an -brownian motion? In this paper we show that by dropping the requirement of -predictability of H we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor's question. The original question, i.e., existence of a strong solution, remains open.
@article{AIHPB_2011__47_2_498_0, author = {Prokaj, Vilmos and R\'asonyi, Mikl\'os and Schachermayer, Walter}, title = {Hiding a constant drift}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {498-514}, doi = {10.1214/10-AIHP363}, mrnumber = {2814420}, zbl = {1216.60048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_2_498_0} }
Prokaj, Vilmos; Rásonyi, Miklós; Schachermayer, Walter. Hiding a constant drift. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 498-514. doi : 10.1214/10-AIHP363. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_2_498_0/
[1] Sur la construction d'une martingale continue, de valeur absolue donnée. In Seminar on Probability, XIV (Paris, 1978/1979) (French). Lecture Notes in Math. 784 62-75. Springer, Berlin, 1980. | Numdam | MR 580109 | Zbl 0426.60047
and .[2] Stochastic bifurcation models. Ann. Probab. 27 (1999) 50-108. | MR 1681142 | Zbl 0943.60087
and .[3] A remark on Tsirelson's stochastic differential equation. In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 291-303. Springer, Berlin, 1999. | Numdam | MR 1768002 | Zbl 0957.60064
and .[4] Diffusion Processes and Their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften 125. Academic Press, New York, 1965. | MR 199891 | Zbl 0285.60063
and[5] Random Times and Enlargements of Filtrations in a Brownian Setting. Lecture Notes in Mathematics 1873. Springer, Berlin, 2006. | MR 2200733 | Zbl 1103.60003
and .[6] Stochastic Integrals. Probability and Mathematical Statistics 5. Academic Press, New York, 1969. | MR 247684 | Zbl 0191.46603
[7] Unfolding the Skorohod reflection of a semimartingale. Statist. Probab. Lett. 79 (2009) 534-536. | MR 2494646 | Zbl 1172.60012
.[8] Stochastic Integration and Differential Equations, 2nd edition. Applications of Mathematics (New York) 21. Springer, Berlin, 2004. | MR 2020294 | Zbl 1041.60005
.[9] Hiding the drift. Ann. Probab. 37 (2009) 2459-2470. Available at http://arxiv.org/abs/0802.1152. | MR 2573564
, and .[10] Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1991. | MR 1083357 | Zbl 0731.60002
and .[11] Creation or deletion of a drift on a Brownian trajectory. In Séminaire de Probabilités XLI. Lecture Notes in Math. 1934 215-232. Springer, Berlin, 2008. | MR 2483734 | Zbl 1157.60077
.[12] An example of a stochastic differential equation that has no strong solution. Teor. Verojatnost. i Primenen. 20 (1975) 427-430. | MR 375461 | Zbl 0353.60061
.