Limiting curlicue measures for theta sums
Cellarosi, Francesco
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 466-497 / Harvested from Numdam

Nous considérons l'ensemble des courbes {γα, N: α∈(0, 1], N∈ℕ} obtenues en interpolant les valeurs des sommes thêta normalisées N-1/2∑n=0N'-1exp(πin2α), 0≤N'<N. Nous démontrons l'existence de la limite des distributions fini-dimensionnelles de telles courbes quand N→∞, où α est distribué selon une quelconque mesure de probabilité λ, absolument continue par rapport à la mesure de Lebesgue sur [0, 1]. Notre théorème principal généralise un résultat de Marklof [Duke Math. J. 97 (1999) 127-153] et de Jurkat et van Horne [Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Notre démonstration se base sur l'analyse des structures géométriques de telles courbes, qui présentent des motifs à spirale (curlicues) à différentes échelles. Nous exploitons une procédure de renormalisation construite par le développement de α en fractions continues avec quotients partiels pairs et un théorème de renouvellement pour les dénominateurs de tels développements en fractions continues.

We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N-1/2∑n=0N'-1exp(πin2α), 0≤N'<N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J. 97 (1999) 127-153] and Jurkat and van Horne [Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Our proof relies on the analysis of the geometric structure of such curves, which exhibit spiral-like patterns (curlicues) at different scales. We exploit a renormalization procedure constructed by means of the continued fraction expansion of α with even partial quotients and a renewal-type limit theorem for the denominators of such continued fraction expansions.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/10-AIHP361
Classification:  37E05,  11K50,  11J70,  28D05,  60F99,  60K05
@article{AIHPB_2011__47_2_466_0,
     author = {Cellarosi, Francesco},
     title = {Limiting curlicue measures for theta sums},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {466-497},
     doi = {10.1214/10-AIHP361},
     mrnumber = {2814419},
     zbl = {1233.37026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_2_466_0}
}
Cellarosi, Francesco. Limiting curlicue measures for theta sums. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 466-497. doi : 10.1214/10-AIHP361. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_2_466_0/

[1] J. Aaronson. Random f-expansions. Ann. Probab. 14 (1986) 1037-1057. | MR 841603 | Zbl 0658.60050

[2] J. Aaronson. An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI, 1997. | MR 1450400 | Zbl 0882.28013

[3] M. V. Berry and J. Goldberg. Renormalisation of curlicues. Nonlinearity 1 (1988) 1-26. | MR 928946 | Zbl 0662.10029

[4] F. Cellarosi. Renewal-type limit theorem for continued fractions with even partial quotients. Ergodic Theory Dynam. Systems 29 (2009) 1451-1478. | MR 2545013 | Zbl 1193.37013

[5] E. A. Coutsias and N. D. Kazarinoff. Disorder, renormalizability, theta functions and Cornu spirals. Phys. D 26 (1987) 295-310. | MR 892449 | Zbl 0626.10033

[6] E. A. Coutsias and N. D. Kazarinoff. The approximate functional formula for the theta function and Diophantine Gauss sums. Trans. Amer. Math. Soc. 350 (1998) 615-641. | MR 1443869 | Zbl 0915.11043

[7] F. M. Dekking and M. Mendès France. Uniform distribution modulo one: A geometrical viewpoint. J. Reine Angew. Math. 329 (1981) 143-153. | MR 636449 | Zbl 0459.10025

[8] A. Fedotov and F. Klopp. Renormalization of exponential sums and matrix cocycles. In Séminaire: Équations aux Dérivées Partielles, 2004-2005 XVI 12. École Polytech., Palaiseau, 2005. | Numdam | MR 2182060

[9] H. Fiedler, W. Jurkat and O. Körner. Asymptotic expansions of finite theta series. Acta Arith. 32 (1977) 129-146. | MR 563894 | Zbl 0308.10021

[10] L. Flaminio and G. Forni. Equidistribution of nilflows and applications to theta sums. Ergodic Theory Dynam. Systems 26 (2006) 409-433. | MR 2218767 | Zbl 1087.37026

[11] G. H. Hardy and J. E. Littlewood. Some problems of Diophantine approximation. Acta Math. 37 (1914) 193-239. | JFM 45.0305.03 | MR 1555099

[12] W. B. Jurkat and J. W. Van Horne. The proof of the central limit theorem for theta sums. Duke Math. J. 48 (1981) 873-885. | MR 782582 | Zbl 0491.10027

[13] W. B. Jurkat and J. W. Van Horne. On the central limit theorem for theta series. Michigan Math. J. 29 (1982) 65-77. | MR 646372 | Zbl 0493.10042

[14] W. B. Jurkat and J. W. Van Horne. The uniform central limit theorem for theta sums. Duke Math. J. 50 (1983) 649-666. | MR 714822 | Zbl 0524.10029

[15] A. Y. Khinchin. Continued Fractions. Chicago Univ. Press, Chicago, 1964. | Zbl 0117.28601

[16] C. Kraaikamp and A. O. Lopes. The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata 59 (1996) 293-333. | MR 1371228 | Zbl 0841.58049

[17] J. Marklof. Limit theorems for theta sums. Duke Math. J. 97 (1999) 127-153. | MR 1682276 | Zbl 0965.11036

[18] M. Mendès France. Entropie, dimension et thermodynamique des courbes planes. In Seminar on Number Theory, Paris 1981-82 (Paris, 1981/1982). Progr. Math. 38 153-177. Birkhäuser, Boston, MA, 1983. | MR 729166 | Zbl 0529.10051

[19] M. Mendès France. Entropy of curves and uniform distribution. In Topics in Classical Number Theory, Vol. I, II (Budapest, 1981). Colloq. Math. Soc. János Bolyai 34 1051-1067. North-Holland, Amsterdam, 1984. | MR 781175 | Zbl 0547.10047

[20] R. R. Moore and A. J. Van Der Poorten. On the thermodynamics of curves and other curlicues. In Miniconference on Geometry and Physics (Canberra, 1989). Proc. Centre Math. Anal. Austral. Nat. Univ. 22 82-109. Austral. Nat. Univ., Canberra, 1989. | MR 1027862 | Zbl 0696.10035

[21] L. J. Mordell. The approximate functional formula for the theta function. J. London Math. Soc. 1 (1926) 68-72. Available at http://jlms.oxfordjournals.org/cgi/reprint/s1-1/2/68. | JFM 52.0376.02

[22] A. Rényi. On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9 (1958) 215-228. | MR 98161 | Zbl 0089.13201

[23] A. M. Rockett and P. Szüsz. Continued Fractions. World Scientific, River Edge, NJ, 1992. | MR 1188878 | Zbl 0869.11058

[24] F. Schweiger. Continued fractions with odd and even partial quotients. Arbeitsber. Math. Inst. Univ. Salzburg 4 (1982) 59-70. | Zbl 0506.10038

[25] F. Schweiger. On the approximation by continues fractions with odd and even partial quotients. Arbeitsber. Math. Inst. Univ. Salzburg 1,2 (1984) 105-114.

[26] F. Schweiger. Ergodic Theory of Fibred Systems and Metric Number Theory. Clarendon Press, Oxford Univ. Press, New York, 1995. | MR 1419320 | Zbl 0819.11027

[27] Y. G. Sinai. Topics in Ergodic Theory. Princeton Mathematical Series 44. Princeton Univ. Press, Princeton, NJ, 1994. | MR 1258087 | Zbl 0805.58005

[28] Y. G. Sinai. Limit theorem for trigonometric sums. Theory of curlicues. Russian Math. Surveys 63 (2008) 1023-1029. | MR 2492771 | Zbl 1172.37005

[29] Y. G. Sinai and C. Ulcigrai. Renewal-type limit theorem for the Gauss map and continued fractions. Ergodic Theory Dynam. Systems 28 (2008) 643-655. | MR 2408397 | Zbl 1151.37010

[30] J. D. Smillie and C. Ulcigrai. Symbolic coding for linear trajectories in the regular octagon. Preprint. Available at arXiv:0905.0871v1.

[31] A. V. Ustinov. On the statistical properties of elements of continued fractions. Dokl. Math. 79 (2009) 87-89. | MR 2513148

[32] J. R. Wilton. The approximate functional formula for the theta function. J. London Mat. Soc. 1,2 (2009) 177-180. Available at http://jlms.oxfordjournals.org/cgi/reprint/s1-2/3/177-a. | JFM 53.0344.06