Dans cet article, nous explicitons la dérivée du flot d'un processus de diffusion réfléchi. Nous obtenons des représentations stochastiques des dérivées des solutions de viscosité d'équations aux dérivées partielles paraboliques semi-linéaires. Nous en déduisons des représentations stochastiques des dérivées des solutions de viscosité d'inégalités variationnelles paraboliques avec conditions au bord de Neumann.
In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.
@article{AIHPB_2011__47_2_395_0, author = {Bossy, Mireille and Ciss\'e, Mamadou and Talay, Denis}, title = {Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {395-424}, doi = {10.1214/10-AIHP357}, mrnumber = {2814416}, zbl = {1236.60051}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_2_395_0} }
Bossy, Mireille; Cissé, Mamadou; Talay, Denis. Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 395-424. doi : 10.1214/10-AIHP357. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_2_395_0/
[1] Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1964. | MR 1225604 | Zbl 0643.33001
and .[2] Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differential Equations 106 (1993) 90-106. | MR 1249178 | Zbl 0786.35051
.[3] Numerical analysis and misspecifications in Finance: From model risk to localisation error estimates for nonlinear PDEs. In Stochastic Processes and Applications to Mathematical Finance 1-25. World Sci. Publ., River Edge, NJ, 2004. | MR 2202690 | Zbl 1191.91052
, and .[4] Handbook of Brownian Motion Facts and Formulae. Birkhaüser, Basel, 2002. | MR 1912205 | Zbl 1012.60003
and .[5] Propriétés d'absolue continuité dans les espaces de Dirichlet et application aux équations différentielles stochastiques. In Séminaire de Probabilités XX, 1984-1985 131-161. Lectures Notes in Math. 1204. Springer, Berlin, 1986. | Numdam | MR 942020 | Zbl 0642.60044
and .[6] On the derivability, with respect to the initial data, of solution of a stochastic differential equation with Lipschitz coefficients. In Séminaire de Théorie du Potentiel, Paris, No. 9 39-57. Lecture Notes in Math. 1393. Springer, Berlin, 1989. | Zbl 0671.60053
and .[7] Reflected solution of backward SDE's, and related obstacle problem for PDE's. Ann. Probab. 25 (1997) 702-737. | MR 1434123 | Zbl 0899.60047
, , , and .[8] Brownian Motion and Stochastic Calculus. Graduated Texts in Mathematics 113. Springer, New York, 1988. | MR 917065 | Zbl 0638.60065
and .[9] An explicit formula for the Skorokhod map on [0, a]. Ann. Probab. 35 (2007) 1740-1768. | MR 2349573 | Zbl 1139.60017
, , and .[10] Dérivation stochastique de diffusions réfléchies. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 283-305. | Numdam | MR 1023953 | Zbl 0688.60043
, and .[11] Reflected forward-backward SDE's and obstacle problems with boundary conditions. J. Appl. Math. Stochastic Anal. 14 (2001) 113-138. | MR 1838341 | Zbl 1002.60065
and .[12] Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 1390-1418. | MR 1936598 | Zbl 1017.60067
and .[13] Representations and regularities for solutions to BSDEs with reflections. Stochastic Process. Appl. 115 (2005) 539-569. | MR 2128629 | Zbl 1076.60049
and .[14] Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744. | MR 711864 | Zbl 0492.60057
.[15] The Malliavin Calculus and Related Topics. Springer, Berlin, 2006. | MR 2200233 | Zbl 1099.60003
.[16] Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations. Stochastic Process. Appl. 116 (2006) 1319-1339. | MR 2251811 | Zbl 1147.35327
, and .[17] Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics, VI (Geilo, 1996) 79-127. Progr. Probab. 42. Birkhäuser, Boston, 1998. | MR 1652339 | Zbl 0893.60036
.[18] Adapted solution of a backward stochastic differential equation. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55-61. | MR 1037747 | Zbl 0692.93064
and .[19] Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Related Fields 110 (1998) 535-558. | MR 1626963 | Zbl 0909.60046
and .[20] Continuous Martingales and Brownian Motion. A Series of Comprehensive Studies in Mathematics 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .[21] Euler's approximations of solutions of SDEs with reflecting boundary. Stochastic Process. Appl. 94 (2001) 317-337. | MR 1840835 | Zbl 1053.60062
.