Dans le cadre du modèle de branchement symbiotique introduit dans [Stochastic Process. Appl. 114 (2004) 127-160], nous montrons que le vieillissement et l'intermittence présentent différents comportements suivant les cas où la corrélation est négative, positive ou nulle. Notre approche permet de prouver et d'affiner de manière élémentaire des résultats classiques concernant les seconds moments du modèle parabolique d'Anderson avec potentiel Brownien. Nous raffinons aussi quelques résultats récents de vieillissement pour des diffusions interactives à noyaux généraux à portée infinie.
For the symbiotic branching model introduced in [Stochastic Process. Appl. 114 (2004) 127-160], it is shown that ageing and intermittency exhibit different behaviour for negative, zero, and positive correlations. Our approach also provides an alternative, elementary proof and refinements of classical results concerning second moments of the parabolic Anderson model with brownian potential. Some refinements to more general (also infinite range) kernels of recent ageing results of [Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 461-480] for interacting diffusions are given.
@article{AIHPB_2011__47_2_376_0, author = {Aurzada, Frank and D\"oring, Leif}, title = {Intermittency and ageing for the symbiotic branching model}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {376-394}, doi = {10.1214/09-AIHP356}, mrnumber = {2814415}, zbl = {1222.60075}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_2_376_0} }
Aurzada, Frank; Döring, Leif. Intermittency and ageing for the symbiotic branching model. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 376-394. doi : 10.1214/09-AIHP356. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_2_376_0/
[1] Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003
, and .[2] On the moments and the interface of symbiotic branching model. Preprint, 2009. | MR 2778802 | Zbl 1219.60082
, and .[3] Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) viii+125. | MR 1185878 | Zbl 0925.35074
and .[4] Mutually catalytic super branching random walks: Large finite systems and renormalization analysis. Mem. Amer. Math. Soc. 171 (2004) viii+97. | MR 2074427 | Zbl 1063.60143
, and .[5] Recurrence and ergodicity of interacting particle systems. Probab. Theory Related Fields 116 (2000) 239-255. | MR 1743771 | Zbl 0954.60095
and .[6] Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998) 1088-1138. | MR 1634416 | Zbl 0938.60042
and .[7] Ageing for interacting diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 461-480. | Numdam | MR 2329512 | Zbl 1117.60088
and .[8] Compact interface property for symbiotic branching. Stochastic Process. Appl. 114 (2004) 127-160. | MR 2094150 | Zbl 1072.60086
and .[9] Intermittency for nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 (2009) 548-568. | MR 2480553 | Zbl 1190.60051
and .[10] Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 (1990) 613-655. | MR 1069840 | Zbl 0711.60055
and .[11] Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 (2007) 1250-1306. | MR 2330971 | Zbl 1126.60085
and .[12] Random Walks and Random Environments, Vol. 1. Oxford Univ. Press, New York, 1995. | MR 1341369 | Zbl 0820.60053
.[13] Moment generating functions for local times of symmetric Markov processes and random walks. In Probability in Banach Spaces, 8 (Brunswick, ME, 1991) 364-376. Progr. Probab. 30. Birkhäuser, Boston, MA, 1992. | MR 1227631 | Zbl 0788.60092
and .[14] Stepping stone models in population genetics and population dynamics. In Stochastic Processes in Physics and Engineering (Bielefeld, 1986) 345-355. Math. Appl. 42. Reidel, Dordrecht, 1988. | MR 948717 | Zbl 0656.92006
.[15] Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395-416. | MR 591802 | Zbl 0462.60061
and .