Annealed upper tails for the energy of a charged polymer
Asselah, Amine
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 80-110 / Harvested from Numdam

Nous étudions les grandes déviations pour l'énergie d'un polymère. L'espace est discret, et le polymère est une chaine linéaire de n monomères associés à des charges. Nous supposons que deux charges n'intéragissent que lorsqu'elles occupent le même site de ℤd. Nous considérons le cas où les deux aléas, valeurs des charges et positions des monomères, sont moyennés, et où la dimension de l'espace est 3 ou plus. Nous obtenons un principe de grande déviations, et pour certaines distributions de charges, la fonctionnelle de taux est explicite.

We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider annealed estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/09-AIHP355
Classification:  60K35,  82C22,  60J25
@article{AIHPB_2011__47_1_80_0,
     author = {Asselah, Amine},
     title = {Annealed upper tails for the energy of a charged polymer},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {80-110},
     doi = {10.1214/09-AIHP355},
     mrnumber = {2779398},
     zbl = {1229.60105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_1_80_0}
}
Asselah, Amine. Annealed upper tails for the energy of a charged polymer. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 80-110. doi : 10.1214/09-AIHP355. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_1_80_0/

[1] A. Asselah. Annealed lower tails for the energy of a charged polymer. J. Stat. Phys. To appear. | MR 2594915 | Zbl 1187.82153

[2] A. Asselah. Shape transition under excess self-intersection for transient random walk. Ann. Henri Poincaré. To appear. | Numdam | MR 2641778 | Zbl 1202.60151

[3] A. Asselah. Large deviations principle for self-intersection local times for simple random walk in dimension d > 4. ALEA 6 (2009) 281-322. | MR 2544599 | Zbl 1135.60340

[4] A. Asselah. Large deviations for the self-intersection times for simple random walk in dimension 3. Probab. Theory Related Fields 141 (2008) 19-45. | MR 2372964 | Zbl 1135.60340

[5] A. Asselah and F. Castell. Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Probab. Theory Related Fields 138 (2007) 1-32. | MR 2288063 | Zbl 1116.60057

[6] A. Asselah and F. Castell. A note on random walk in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 163-173. | Numdam | MR 2303117 | Zbl 1112.60088

[7] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. AMS, Providence, RI, 2009. | MR 2584458 | Zbl 1192.60002

[8] X. Chen. Limit laws for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 638-672. | Numdam | MR 2446292 | Zbl 1178.60024

[9] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. In Proceedings of the Third Erich L. Lehmann Symposium. IMS Lecture Notes-Monograph Series 57 237-251, 2009. | MR 2681685

[10] B. Derrida, R. B. Griffith and P. G. Higgs. A model of directed walks with random interactions. Europhys. Lett. 18 (1992) 361-366.

[11] N. Gantert, R. Van Der Hofstad and W. König. Deviations of a random walk in a random scenery with stretched exponential tails. Stochastic Process. Appl. 116 (2006) 480-492. | MR 2199560 | Zbl 1100.60056

[12] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007. | MR 2380992 | Zbl 1125.82001

[13] R. Van Der Hofstad and W. König. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915-944. | MR 1851362 | Zbl 1126.82313

[14] F. Den Hollander. Random Polymers. Lecture Notes in Mathematics 1974. Springer, Berlin, 2009. | MR 2504175 | Zbl 1173.82002

[15] G. Lawler, M. Bramson and D. Griffeath. Internal diffusion limited aggregation. Ann. Probab. 20 (1992) 2117-2140. | MR 1188055 | Zbl 0762.60096

[16] A. Nagaev. Integral limit theorems for large deviations when Cramer's condition is not fulfilled. Teor. Verojatnost. i Primenen. 14 (1969) 51-64, 203-216 (in Russian). | MR 247652 | Zbl 0181.45004

[17] S. Nagaev. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979) 745-789. | MR 542129 | Zbl 0418.60033