Nous étudions un processus de Markov sur un système de particules entrelacées. Lorsque le temps t est grand, les particules remplissent un domaine dépendant d'un paramètre ε > 0. Ce domaine possède deux points de rebroussement, dont l'un pointe vers le haut et l'autre vers le bas. À la limite ε ↓ 0, les deux points de rebroussement sont tangents, formant ainsi un tacnode. Le résultat principal de cet article est un calcul du noyau de corrélation locale autour du point tacnodal pendant le régime de transition ε ↓ 0. Nous démontrons aussi que le processus local interpole entre le processus de Pearcey et le processus des mineurs du GUE.
We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process.
@article{AIHPB_2011__47_1_243_0, author = {Borodin, Alexei and Duits, Maurice}, title = {Limits of determinantal processes near a tacnode}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {47}, year = {2011}, pages = {243-258}, doi = {10.1214/10-AIHP373}, mrnumber = {2779404}, zbl = {1208.82039}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_1_243_0} }
Borodin, Alexei; Duits, Maurice. Limits of determinantal processes near a tacnode. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 243-258. doi : 10.1214/10-AIHP373. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_1_243_0/
[1] Airy processes with wanderers and new universality classes. Available at arXiv:0811.1863. | Zbl 1200.60069
, and .[2] Large n limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259 (2005) 367-389. | MR 2172687 | Zbl 1129.82014
, and .[3] Periodic Schur process and cylindric partitions. Duke Math. J. 10 (2007) 1119-1178. | MR 2362241 | Zbl 1131.22003
.[4] Determinantal point processes. Available at arXiv:0911.1153. | Zbl 1238.60055
.[5] Anisotropic growth of random surfaces in 2+1 dimensions. Available at arXiv:0804.3035. | Zbl 1303.82015
and .[6] Asymptotics of Plancherel-type random partitions. J. Algebra 313 (2007) 40-60. | MR 2326137 | Zbl 1117.60051
and .[7] Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000) 481-515. | MR 1758751 | Zbl 0938.05061
, and .[8] Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57 (1998) 7176-7185. | MR 1618958
and .[9] Level spacing of random matrices in an external source. Phys. Rev. E (3) 58 (1998) 4140-4149. | MR 1662382
and .[10] The universal Airy1 and Airy2 processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices 321-332. Contemp. Math. 458. Amer. Math. Soc., Providence, RI, 2008. | MR 2411915 | Zbl 1145.82332
.[11] Determinantal processes and independence. Probab. Surv. 3 (2006) 206-229. | MR 2216966 | Zbl 1189.60101
, , and .[12] Random matrices and determinantal processes. Available at arXiv:math-ph/0510038. | MR 2581882
.[13] Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342-1371. | MR 2268547 | Zbl 1127.60047
and .[14] Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385-447. | MR 2203677 | Zbl 1189.60024
.[15] Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98 (2003) 167-212. | Numdam | MR 2031202 | Zbl 1055.60003
.[16] Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Academic, Dordrecht, 2002. | MR 2059364 | Zbl 1017.05103
.[17] The birth of a random matrix. Moscow Math. J. 6 (2006) 553-566. | MR 2274865 | Zbl 1130.15014
and .[18] Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 (2007) 571-609. | MR 2276355 | Zbl 1115.60011
and .[19] Scale invariance of the PNG Droplet and the Airy Process. J. Stat. Phys. 108 (2002) 1071-1106. | MR 1933446 | Zbl 1025.82010
and .[20] Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107-160; translation in: Russian Math. Surveys 55 (2000) 923-975. | MR 1799012 | Zbl 0991.60038
.[21] Determinantal random point fields. In Encyclopedia of Mathematical Physics 2 47-53. J. P. Françoise, G. L. Naber and T. S. Tsun (Eds.). Elsevier, Oxford, 2006. | Zbl 0991.60038
.[22] The Pearcey process. Comm. Math. Phys 263 (2006) 381-400. | MR 2207649 | Zbl 1129.82031
and .