Connectivity bounds for the vacant set of random interlacements
Sidoravicius, Vladas ; Sznitman, Alain-Sol
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010), p. 976-990 / Harvested from Numdam

Le modèle des entrelacs aléatoires sur ℤd, d≥3, a été récemment introduit dans [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. Un nombre positif ou nul u contrôle la densité des entrelacs aléatoires sur ℤd. Dans la note présente, nous étudions les propriétés de connectivité du complémentaire de l'entrelac au niveau u, dans le régime non percolatif u>u∗, avec u∗ le nombre positif qui est le paramètre critique de la percolation du complémentaire des entrelacs, voir [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831-858]. Nous montrons une propriété de décroissance sous-exponentielle de la fonction de connectivité au niveau u, lorsque u>u∗∗, où u∗∗ est un autre paramètre critique introduit dans [Ann. Probab. 37 (2009) 1715-1746]. La question de savoir si u∗ et u∗∗ sont égaux est pour le moment ouverte.

The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831-858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab. 37 (2009) 1715-1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.

Publié le : 2010-01-01
DOI : https://doi.org/10.1214/09-AIHP335
Classification:  60K35,  60G50,  82C41
@article{AIHPB_2010__46_4_976_0,
     author = {Sidoravicius, Vladas and Sznitman, Alain-Sol},
     title = {Connectivity bounds for the vacant set of random interlacements},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {46},
     year = {2010},
     pages = {976-990},
     doi = {10.1214/09-AIHP335},
     mrnumber = {2744881},
     zbl = {1210.60107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_4_976_0}
}
Sidoravicius, Vladas; Sznitman, Alain-Sol. Connectivity bounds for the vacant set of random interlacements. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 976-990. doi : 10.1214/09-AIHP335. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_4_976_0/

[1] G. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. | MR 1707339

[2] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Basel, 1991. | MR 1117680 | Zbl 0925.60078

[3] V. Sidoravicius and A. S. Sznitman. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009) 831-858. | MR 2512613 | Zbl 1168.60036

[4] A. S. Sznitman. Vacant set of random interlacements and percolation. Ann. Math. To appear. Available at http://www.math.ethz.ch/u/sznitman/preprints. | MR 2680403 | Zbl 1202.60160

[5] A. S. Sznitman. Random walks on discrete cylinders and random interlacements. Probab. Theory Related Fields 145 (2009) 143-174. | MR 2520124 | Zbl 1172.60316

[6] A. S. Sznitman. Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37 (2009) 1715-1746. | MR 2561432 | Zbl 1179.60025

[7] A. Teixeira. On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19 (2009) 454-466. | MR 2498684 | Zbl 1158.60046

[8] A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (2009) 1604-1627. | MR 2525105 | Zbl 1192.60108

[9] A. Teixeira. On the size of a finite vacant cluster of random interlacements with small intensity. Preprint. Available at http://www.math.ethz.ch/~teixeira/. | Zbl pre05950540

[10] D. Windisch. Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008) 140-150. | MR 2386070 | Zbl 1187.60089

[11] D. Windisch. Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. To appear. Available at arXiv:0907.1627. | MR 2642893 | Zbl 1191.60062