Considérons une variante de la marche aléatoire simple et symétrique sur les entiers, avec le mécanisme de transition suivant: A chaque site x, la probabilité de sauter à droite est ω(x)∈[½, 1), jusqu'à la première fois que le processus saute à gauche du site x, après laquelle la probabilité de sauter à droite est ½. Nous examinons les propriétés de transience/récurrence pour ce processus, dans les environnements déterministes et aussi dans les environnements stationnaires et ergodiques {ω(x)}x∈Z. Dans les environnements déterministes, nous étudions aussi la vitesse du processus.
Consider a variant of the simple random walk on the integers, with the following transition mechanism. At each site x, the probability of jumping to the right is ω(x)∈[½, 1), until the first time the process jumps to the left from site x, from which time onward the probability of jumping to the right is ½. We investigate the transience/recurrence properties of this process in both deterministic and stationary, ergodic environments {ω(x)}x∈Z. In deterministic environments, we also study the speed of the process.
@article{AIHPB_2010__46_4_949_0, author = {Pinsky, Ross}, title = {Transience/recurrence and the speed of a one-dimensional random walk in a ``have your cookie and eat it'' environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {949-964}, doi = {10.1214/09-AIHP331}, mrnumber = {2744879}, zbl = {1218.60089}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_4_949_0} }
Pinsky, Ross G. Transience/recurrence and the speed of a one-dimensional random walk in a “have your cookie and eat it” environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 949-964. doi : 10.1214/09-AIHP331. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_4_949_0/
[1] On the speed of a cookie random walk. Probab. Theory Related Fields 141 (2008) 625-645. | MR 2391167 | Zbl 1141.60383
and .[2] Excited random walk. Electron. Comm. Probab. 8 (2003) 86-92. | MR 1987097 | Zbl 1060.60043
and .[3] Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999) 501-518. | MR 1717528 | Zbl 0930.60041
.[4] Probability: Theory and Examples, 3rd edition. Brooks/Cole-Thomson Learning, Belmont, CA, 2005. | MR 1068527 | Zbl 0709.60002
.[5] Positively and negatively excited random walks on intergers, with branching processes. Electron. J. Probab. 13 (2008) 1952-1979. | MR 2453552 | Zbl 1191.60113
and .[6] Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005) 98-122. | MR 2197139 | Zbl 1076.60088
.