Nous considérons l'équation de la chaleur stochastique ∂tu=κ∂xx2u+σ(u)ẇ avec un bruit blanc spatio-temporel ẇ et une constante κ>0. Sous des conditions adéquates sur la condition initiale u0 et sur σ, nous montrons que les quantités lim sup t→∞t-1sup x∈Rln E(|ut(x)|2) et lim sup t→∞t-1ln E(sup x∈R|ut(x)|2) sont égales. Par ailleurs, nous les bornons inférieurement et supérieurement par des constantes strictement positives et finies dépendant explicitement de 1/κ. Nos démonstrations reposent sur la preuve quantitative de la forte concentration des pics du processus x↦ut(x) pour de grandes valeurs de t infiniment nombreuses. Dans le cas particulier du modèle d'Anderson parabolique-où σ(u)=λu pour un λ>0 - ce phénomène de pics est une façon de préciser la notion physique d'intermittence.
Consider a stochastic heat equation ∂tu=κ ∂xx2u+σ(u)ẇ for a space-time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t-1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t-1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated for infinitely-many large values of t. In the special case of the parabolic Anderson model - where σ(u)=λu for some λ>0 - this “peaking” is a way to make precise the notion of physical intermittency.
@article{AIHPB_2010__46_4_895_0, author = {Foondun, Mohammud and Khoshnevisan, Davar}, title = {On the global maximum of the solution to a stochastic heat equation with compact-support initial data}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {895-907}, doi = {10.1214/09-AIHP328}, mrnumber = {2744876}, zbl = {1210.35305}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_4_895_0} }
Foondun, Mohammud; Khoshnevisan, Davar. On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 895-907. doi : 10.1214/09-AIHP328. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_4_895_0/
[1] The stochastic heat equation: Feynman-Kac formula and intermittence. J. Statist. Physics 78 (1995) 1377-1402. | MR 1316109 | Zbl 1080.60508
and .[2] Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19-42. | MR 365692 | Zbl 0301.60035
.[3] Parabolic Anderson problem and intermittency. In Memoires of the AMS 108. Amer. Math. Soc., Rhode Island, 1994. | MR 1185878 | Zbl 0925.35074
and .[4] Sur l'équation de convolution μ=μ∗σ. C. R. Acad. Sci. Paris 250 (1960) 799-801. | MR 119041 | Zbl 0093.12802
and .[5] A Minicourse on Stochastic Partial Differential Equations. D. Khoshnevisan and F. Rassoul-Agha (Eds). Lecture Notes in Mathematics 1962. Springer, Berlin, 2009. | MR 1500166
, , , and .[6] Some non-linear s.p.d.e.'s that are second order in time. Electron. J. Probab. 8 (2003). Paper no. 1, 1-21 (electronic). | MR 1961163 | Zbl 1013.60044
and .[7] White noise driven SPDEs with reflection. Probab. Theory Related Fields 95 (1993) 1-24. | MR 1207304 | Zbl 0794.60059
and .[8] Intermittency and nonlinear parabolic stochastic partial differential equations. Preprint, 2008. | MR 2480553 | Zbl 1190.60051
and .[9] A local time correspondence for stochastic partial differential equations. Preprint, 2008. | MR 2763724 | Zbl pre05900799
, and .[10] On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | MR 1698967 | Zbl 0939.60058
and .[11] Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B 290 (1987) 582-602. | MR 922846
.[12] Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl 1101.82329
, and .[13] Kinetic roughening of growing surfaces. In Solids Far from Equilibrium: Growth, Morphology, and Defects 479-582. C. Godrèche (Ed.). Cambridge Univ. Press, Cambridge, 1991.
and .[14] On the support of solutions to the heat equation with noise. Stochastics and Stoch. Reports 37 (1991) 225-245. | MR 1149348 | Zbl 0749.60057
.[15] The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields 93 (1992) 325-358. | MR 1180704 | Zbl 0767.60054
and .[16] Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994) 415-437. | MR 1271224 | Zbl 0801.60050
.[17] An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour XIV, 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | MR 876085 | Zbl 0608.60060
.