Dans ce papier, nous prouvons des théorèmes de la limite centrale et non-centrale pour les variations à poids d'ordre q du mouvement brownien fractionnaire d'indice H∈(0, 1), pour q un entier supérieur ou égal à 2. Il y a trois cas, suivant la position de H par rapport à 1/2q et 1-1/2q. Si 1/2q<H≤1-1/2q, nous montrons un théorème de la limite centrale vers une variable aléatoire de loi conditionnellement gaussienne. Si H<1/2q, nous montrons la convergence dans L2 vers une limite qui dépend seulement du mouvement brownien fractionnaire. Si H>1-1/2q, nous montrons la convergence dans L2 vers une intégrale stochastique par rapport au processus d'Hermite d'ordre q.
In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q<H≤1-1/2q, the limit being a conditionally gaussian distribution. If H<1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H>1-1/2q we show the convergence in L2 to a stochastic integral with respect to the Hermite process of order q.
@article{AIHPB_2010__46_4_1055_0, author = {Nourdin, Ivan and Nualart, David and Tudor, Ciprian A.}, title = {Central and non-central limit theorems for weighted power variations of fractional brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {1055-1079}, doi = {10.1214/09-AIHP342}, mrnumber = {2744886}, zbl = {1221.60031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_4_1055_0} }
Nourdin, Ivan; Nualart, David; Tudor, Ciprian A. Central and non-central limit theorems for weighted power variations of fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 1055-1079. doi : 10.1214/09-AIHP342. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_4_1055_0/
[1] Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425-441. | MR 716933 | Zbl 0518.60023
and .[2] A change of variable formula with Itô correction term. Preprint, 2008. Available at arXiv:0802.3356. | MR 2722787 | Zbl 1204.60044
and .[3] Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H in (0, 1/2). Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049-1081. | Numdam | MR 2172209 | Zbl 1083.60027
and .[4] Power variation of some integral fractional processes. Bernoulli 12 (2006) 713-735. | MR 2248234 | Zbl 1130.60058
, and .[5] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27-52. | MR 550122 | Zbl 0397.60034
and .[6] CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. Verw. Gebiete 70 (1985) 191-212. | MR 799146 | Zbl 0575.60024
and .[7] Milstein's type scheme for fractional SDEs. Ann. Inst. H. Poincaré Probab. Statist. (2007). To appear. Available at arXiv:math/0702317. | Numdam | MR 2572165 | Zbl 1197.60070
and .[8] m-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR 2144234 | Zbl 1083.60045
, , and .[9] Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H≥¼. Ann. Probab. 31 (2001) 1772-1820. | MR 2016600 | Zbl 1059.60067
, and .[10] Limit of random measures associated with the increments of a Brownian semimartingale. Preprint. Univ. Paris VI (revised version, unpublished work), 1994.
.[11] Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Proc. Appl. 117 (2006) 271-296. | MR 2290877 | Zbl 1110.60023
and .[12] Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899. | MR 2359060 | Zbl 1141.60043
and .[13] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In Séminaire de Probabilités XLI 181-197. Springer, Berlin, 2008. | MR 2483731 | Zbl 1148.60034
.[14] Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion. Ann. Probab. 36 (2008) 2159-2175. | MR 2478679 | Zbl 1155.60010
.[15] Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. (2008). In revision. Available at arXiv:0707.3448. | MR 2591903 | Zbl 1202.60038
and .[16] Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2007) 1229-1256 (electronic). | MR 2430706 | Zbl 1193.60028
and .[17] Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case H=1/4. Ann. Probab. (2008). To appear. Available at arXiv:0802.3307. | MR 2573556 | Zbl 1200.60023
and .[18] Malliavin Calculus and Related Topics, 2nd edition. Springer, New York, 2005. | MR 1344217 | Zbl 0837.60050
.[19] Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003) 3-39. | MR 2037156 | Zbl 1063.60080
.[20] Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII 247-262. Lecture Notes in Math. 1857. Springer, Berlin, 2005. | MR 2126978 | Zbl 1063.60027
and .[21] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53-83. | MR 550123 | Zbl 0397.60028
.[22] Analysis of the Rosenblatt process. ESAIM Probab. Statist. 12 230-257. | Numdam | MR 2374640 | Zbl 1187.60028
.