Nous étudions la marche aléatoire simple sur l'ensemble des points visités par une marche aléatoire simple sur ℤ3 et ℤ4. En dimension quatre, nous établissons des bornes presque sûres pour le noyau de la chaleur de X et pour max0≤k≤n|Xk| qui nécessitent des termes correctifs logarithmiques. En dimension trois, nous montrons que X à un comportement non diffusif presque sûrement. Pour démontrer ces résultats, nous obtenons des estimées asymptotiques pour les temps de coupure de la marche aléatoire simple et pour la marche à boucles effacées qui sont intéressantes en elles-mêmes.
We study the simple random walk X on the range of simple random walk on ℤ3 and ℤ4. In dimension four, we establish quenched bounds for the heat kernel of X and max0≤k≤n|Xk| which require extra logarithmic correction terms to the higher-dimensional case. In dimension three, we demonstrate anomalous behavior of X at the quenched level. In order to establish these estimates, we obtain several asymptotic estimates for cut times of simple random walk and asymptotic estimates for loop-erased random walk, which are of independent interest.
@article{AIHPB_2010__46_4_1001_0, author = {Shiraishi, Daisuke}, title = {Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {1001-1024}, doi = {10.1214/09-AIHP337}, mrnumber = {2744883}, zbl = {1208.82048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_4_1001_0} }
Shiraishi, Daisuke. Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 1001-1024. doi : 10.1214/09-AIHP337. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_4_1001_0/
[1] Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Comm. Math. Phys. 278 (2008) 385-431. | MR 2372764 | Zbl 1144.82030
, , and .[2] Recurrence of random walk traces. Ann. Probab. 35 (2007) 732-738. | MR 2308594 | Zbl 1118.60059
, and .[3] Random walk on the range of random walk. J. Stat. Phys. 136 (2009) 349-372. | MR 2525250 | Zbl 1184.60011
.[4] Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, (1950) 353-367. Univ. California Press, Berkeley and Los Angeles, 1951. | MR 47272 | Zbl 0044.14001
and .[5] An almost sure invariance principle for the range of random walks. Stochastic Process. Appl. 78 (1998) 131-143. | MR 1657371 | Zbl 0934.60044
.[6] Structure of clusters generated by random walks. J. Phys. A 17 (1984) L849-L853.
, , and .[7] The range of transient random walk. J. Analyse Math. 24 (1971) 369-393. | MR 283890 | Zbl 0249.60038
and .[8] Heat kernel estimates for strongly recurrent random walk on random media. J. Theoret. Probab. 21 (2008) 910-935. | MR 2443641 | Zbl 1159.60029
and .[9] Intersections of Random Walks. Birkhauser, Boston, 1991. | MR 1117680 | Zbl 0925.60078
.[10] The logarithmic correction for loop-erased walk in four dimensions. In Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. Special Issue (1995) 347-361. | MR 1364896 | Zbl 0889.60075
.[11] Cut times for simple random walk. Electron. J. Probab. 1 (1996) 1-24. | MR 1423466 | Zbl 0888.60059
.[12] A lower bound on the growth exponent for loop-erased random walk in two dimensions. ESAIM Probab. Statist. 3 (1999) 1-21. | Numdam | MR 1694205 | Zbl 0926.60041
.