La continuité absolue, presque sûrement, est démontrée dans une classe de convolutions de Bernoulli symétrique, étendant un résultat de Peres et Solomyak.
We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.
@article{AIHPB_2010__46_3_888_0, author = {Bj\"orklund, Michael and Schnellmann, Daniel}, title = {Almost sure absolute continuity of Bernoulli convolutions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {888-893}, doi = {10.1214/09-AIHP334}, mrnumber = {2682271}, zbl = {1204.28004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_3_888_0} }
Björklund, Michael; Schnellmann, Daniel. Almost sure absolute continuity of Bernoulli convolutions. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 888-893. doi : 10.1214/09-AIHP334. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_3_888_0/
[1] Distribution functions and the Riemann Zeta function. Trans. Amer. Math. Soc. 38 (1935) 48-88. | JFM 61.0462.03 | MR 1501802
and .[2] On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935) 541-548. | JFM 61.0464.02 | MR 1507093
and .[3] Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996) 231-239. | MR 1386842 | Zbl 0867.28001
and .[4] On the random series ∑±λn (an Erdös problem). Ann. of Math. (2) 142 (1995) 611-625. | MR 1356783 | Zbl 0837.28007
.[5] On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56 (1934) 659-663. | MR 1507049 | Zbl 0010.05905
.[6] On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 41 (1935) 137-138. | JFM 61.0464.01 | MR 1563036
.[7] On convergent Poisson convolutions. Amer. J. Math. 57 (1935) 827-838. | JFM 61.0465.02 | MR 1507116
.