Characterization of unitary processes with independent and stationary increments
Sahu, Lingaraj ; Sinha, Kalyan B.
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010), p. 575-593 / Harvested from Numdam

Cet article poursuit la recherche initiée dans (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) pour caractériser les processus stationnaires unitaires gaussiens à incréments indépendants. L'hypothèse antérieure d'uniforme continuité est remplacée par de la continuité faible. Avec des conditions techniques sur le domaine du générateur, nous montrons que le processus est équivalent unitairement à la solution d'une équation de Hudson-Parthasarathy appropriée.

This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.

Publié le : 2010-01-01
DOI : https://doi.org/10.1214/09-AIHP327
Classification:  60G51,  81S25
@article{AIHPB_2010__46_2_575_0,
     author = {Sahu, Lingaraj and Sinha, Kalyan B.},
     title = {Characterization of unitary processes with independent and stationary increments},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {46},
     year = {2010},
     pages = {575-593},
     doi = {10.1214/09-AIHP327},
     mrnumber = {2667710},
     zbl = {1203.81094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_2_575_0}
}
Sahu, Lingaraj; Sinha, Kalyan B. Characterization of unitary processes with independent and stationary increments. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 575-593. doi : 10.1214/09-AIHP327. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_2_575_0/

[1] L. Accardi, J. L. Journé and J. M. Lindsay. On multi-dimensional Markovian cocycles. In Quantum Probability and Applications, IV (Rome, 1987) 59-67. Lecture Notes in Math. 1396. Springer, Berlin, 1989. | MR 1019566 | Zbl 0674.60064

[2] I. M. Geĺfand and N. Y. Vilenkin. Generalized functions, Vol. 4: Applications of Harmonic Analysis. Translated from the Russian by Amiel Feinstein. Academic Press, New York, 1964. | MR 173945 | Zbl 0144.17202

[3] F. Fagnola. Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated semigroups. In Quantum Probability and Related Topics 139-148. QP-PQ, VII. World Sci. Publ., River Edge, NJ, 1992. | MR 1186660 | Zbl 0789.47027

[4] D. Goswami and K. B. Sinha. Quantum Stochastic Processes and Geometry. Cambridge Tracts in Mathematics 169. Cambridge Univ. Press, 2007. | MR 2299106 | Zbl 1144.81002

[5] R. L. Hudson and J. M. Lindsay. On characterizing quantum stochastic evolutions. Math. Proc. Cambridge Philos. Soc. 102 (1987) 363-369. | MR 898155 | Zbl 0644.46046

[6] R. L. Hudson and K. R. Parthasarathy. Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys. 93 (1984) 301-323. | MR 745686 | Zbl 0546.60058

[7] J. M. Lindsay and S. J. Wills. Markovian cocycles on operator algebras adapted to a Fock filtration. J. Funct. Anal. 178 (2000) 269-305. | MR 1802896 | Zbl 0969.60066

[8] J. M. Lindsay and S. J. Wills. Construction of some quantum stochastic operator cocycles by the semigroup method. Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006) 519-529. | MR 2349207 | Zbl 1123.47052

[9] A. Mohari. Quantum stochastic differential equations with unbounded coefficients and dilations of Feller's minimal solution. Sankhyā Ser. A 53 (1991) 255-287. | MR 1189771 | Zbl 0751.60062

[10] A. Mohari and K. B. Sinha. Stochastic dilation of minimal quantum dynamical semigroup. Proc. Indian Acad. Sci. Math. Sci. 102 (1992) 159-173. | MR 1213635 | Zbl 0766.60119

[11] K. R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics 85. Birkhäuser, Basel, 1992. | MR 1164866 | Zbl 0751.60046

[12] L. Sahu, M. Schürmann and K. B. Sinha. Unitary processes with independent increments and representations of Hilbert tensor algebras. Publ. Res. Inst. Math. Sci. 45 (2009) 745-785. | MR 2569566 | Zbl 1194.81138

[13] M. Schürmann. Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. Probab. Theory Related Fields 84, (1990) 473-490. | MR 1042061 | Zbl 0685.60070

[14] M. Schürmann. White Noise on Bialgebras. Lecture Notes in Math. 1544. Springer, Berlin, 1993. | MR 1238942 | Zbl 0773.60100

[15] K. B. Sinha. Quantum dynamical semigroups. In Mathematical Results in Quantum Mechanics 161-169. Oper. Theory Adv. Appl. 70. Birkhäuser, Basel, 1994. | MR 1309019 | Zbl 0831.46077