Nous prouvons que les mesures empiriques d'une marche aléatoire unidimensionnelle en environnement aléatoire convergent étroitement vers la loi stationnaire d'une marche aléatoire dans une vallée infinie. La construction de cette vallée infinie revient à Golosov, voir Comm. Math. Phys. 92 (1984) 491-506. En applications, nous obtenons la convergence étroite du maximum des temps locaux et du temps local d'intersections de la marche aléatoire en environnement aléatoire; de plus, nous identifions la constante représentant la “limsup” presque sûre du maximum des temps locaux.
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the - suitably centered - empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in an infinite valley. The construction of the infinite valley goes back to Golosov, see Comm. Math. Phys. 92 (1984) 491-506. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the RWRE and also determine the exact constant in the almost sure upper limit of the maximal local time.
@article{AIHPB_2010__46_2_525_0, author = {Gantert, Nina and Peres, Yuval and Shi, Zhan}, title = {The infinite valley for a recurrent random walk in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {525-536}, doi = {10.1214/09-AIHP205}, mrnumber = {2667708}, zbl = {1201.60096}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_2_525_0} }
Gantert, Nina; Peres, Yuval; Shi, Zhan. The infinite valley for a recurrent random walk in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 525-536. doi : 10.1214/09-AIHP205. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_2_525_0/
[1] Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47 (1993) 17-35. | MR 1232850 | Zbl 0786.60101
.[2] Häufig besuchte Punkte der Irrfahrt in zufälliger Umgebung. Diploma thesis, Johannes Gutenberg-Universität Mainz, 2009.
.[3] Valleys and the maximal local time for random walk in random environment. Probab. Theory Related Fields 137 (2007) 443-473. | MR 2278464 | Zbl 1106.60082
, , and .[4] Probability: Random Walks and Electrical Networks. Carus Math. Monographs 22. Math. Assoc. Amer., Washington, DC, 1984. | MR 920811 | Zbl 0583.60065
and .[5] Many visits to a single site by a transient random walk in random environment. Stochastic Process. Appl. 99 (2002) 159-176. | MR 1901151 | Zbl 1059.60100
and .[6] Localization of random walks in one-dimensional random environments. Comm. Math. Phys. 92 (1984) 491-506. | MR 736407 | Zbl 0534.60065
.[7] Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Hackensack, NJ, 2005. | MR 2168855 | Zbl 1090.60001
.[8] A local time curiosity in random environment. Stochastic Process. Appl. 76 (1998) 231-250. | MR 1642673 | Zbl 0932.60054
.[9] Sinai's walk via stochastic calculus. In Milieu aléatoires 53-74. F. Comets and E. Pardoux (Eds). Panoramas et Synthèses 12. Soc. Math. France, Paris, 2001. | MR 2226845 | Zbl 1031.60088
.[10] The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27 (1982) 256-268. | MR 657919 | Zbl 0505.60086
.[11] Random walks in random environment. Ann. Probab. 3 (1975) 1-31. | MR 362503 | Zbl 0305.60029
.[12] Random walks in random environment. In XXXI Summer School in Probability, St Flour (2001) 193-312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. | MR 2071631 | Zbl 1060.60103
.