Differential equations driven by gaussian signals
Friz, Peter ; Victoir, Nicolas
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010), p. 369-413 / Harvested from Numdam

Nous donnons une condition simple et optimale sur la covariance d'un processus gaussien pour que celui-ci puisse être associé naturellement à un rough path. Une fois ce processus construit, nous démontrons un principe de grandes déviations, un théorème du support, et plusieurs résultats d'approximations. Avec la théorie des rough paths de T. Lyons, nous obtenons ainsi un cadre puissant, bien que conceptuellement simple, dans lequel nous pouvons analyser les équations différentielles conduites par des signaux gaussiens dans le sens des rough paths.

We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful - yet conceptually simple - framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.

Publié le : 2010-01-01
DOI : https://doi.org/10.1214/09-AIHP202
Classification:  60G15,  60H99
@article{AIHPB_2010__46_2_369_0,
     author = {Friz, Peter and Victoir, Nicolas},
     title = {Differential equations driven by gaussian signals},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {46},
     year = {2010},
     pages = {369-413},
     doi = {10.1214/09-AIHP202},
     mrnumber = {2667703},
     zbl = {1202.60058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_2_369_0}
}
Friz, Peter; Victoir, Nicolas. Differential equations driven by gaussian signals. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 369-413. doi : 10.1214/09-AIHP202. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_2_369_0/

[1] S. Aida, S. Kusuoka and D. Stroock. On the support of Wiener functionals. In Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics (Sanda/Kyoto, 1990) 3-34. Pitman Res. Notes Math. Ser. 284. Longman Sci. Tech., Harlow, 1993. | MR 1354161 | Zbl 0790.60047

[2] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. | MR 233396 | Zbl 0944.60003

[3] C. Borell. Tail probabilities in Gauss space. In Vector Space Measures and Applications (Proc. Conf., Univ. Dublin, Dublin, 1977), II 73-82. Lecture Notes in Phys. 77. Springer, Berlin, 1978. | MR 502400 | Zbl 0397.60015

[4] C. Borell. On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191-203. | MR 764146 | Zbl 0555.60008

[5] C. Borell. On the Taylor series of a Wiener polynomial. In Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and Their Integration. Case Western Reserve University, Cleveland, 1984.

[6] T. Cass and P. Friz. Densities for rough differential equations under Hoermander's condition. Ann. of Math. Accepted, 2008. Available at http://pjm.math.berkeley.edu/scripts/coming.php?jpath=annals. | Zbl 1205.60105

[7] T. Cass, P. Friz and N. Victoir. Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359-3371. | MR 2485431 | Zbl 1175.60034

[8] K.-T. Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. of Math. (2) 65 (1957) 163-178. | MR 85251 | Zbl 0077.25301

[9] L. Coutin, P. Friz and N. Victoir. Good rough path sequences and applications to anticipating stochastic calculus. Ann. Probab. 35 (2007) 1172-1193. | MR 2319719 | Zbl 1132.60053

[10] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR 1883719 | Zbl 1047.60029

[11] L. Coutin and N. Victoir. Enhanced Gaussian processes and applications. Preprint, 2005. | Numdam | MR 2528082 | Zbl 1181.60057

[12] J.-D. Deuschel and D. W. Stroock. Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA, 1989. | MR 997938 | Zbl 0705.60029

[13] R. M. Dudley and R. Norvaiša. Differentiability of Six Operators on Nonsmooth Functions and p-variation. Lecture Notes in Mathematics 1703. Springer, Berlin, 1999. (With the collaboration of Jinghua Qian). | MR 1705318 | Zbl 0973.46033

[14] D. Feyel and A. De La Pradelle. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860-892. | MR 2261056 | Zbl 1110.60031

[15] P. Friz and H. Oberhauser. Isoperimetry and rough path regularity. arXiv-preprint, 2007.

[16] P. Friz and N. Victoir. Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 703-724. | Numdam | MR 2144230 | Zbl 1080.60021

[17] P. Friz and N. Victoir. A note on the notion of geometric rough paths. Probab. Theory Related Fields 136 (2006) 395-416. | MR 2257130 | Zbl 1108.34052

[18] P. Friz and N. Victoir. A variation embedding theorem and applications. J. Funct. Anal. 239 (2006) 631-637. | MR 2261341 | Zbl 1114.46022

[19] P. Friz and N. Victoir. Large deviation principle for enhanced Gaussian processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 775-785. | Zbl 1172.60306

[20] P. K. Friz. Continuity of the Itô-map for Hölder rough paths with applications to the support theorem in Hölder norm. In Probability and Partial Differential Equations in Modern Applied Mathematics 117-135. IMA Vol. Math. Appl. 140. Springer, New York, 2005. | MR 2202036 | Zbl 1090.60038

[21] M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR 2091358 | Zbl 1058.60037

[22] N. C. Jain and D. Monrad. Gaussian measures in Bp. Ann. Probab. 11 (1983) 46-57. | MR 682800 | Zbl 0504.60045

[23] M. Ledoux. Isoperimetry and Gaussian analysis. In Lectures on Probability Theory and Statistics (Saint-Flour, 1994) 165-294. Lecture Notes in Math. 1648. Springer, Berlin, 1996. | MR 1600888 | Zbl 0874.60005

[24] M. Ledoux and M. Talagrand. Probability in Banach spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. (Isoperimetry and processes.) | MR 1102015 | Zbl 0748.60004

[25] A. Lejay. An introduction to rough paths. In Séminaire de Probabilités XXXVII 1-59. Lecture Notes in Math. 1832. Springer, Berlin, 2003. | MR 2053040 | Zbl 1041.60051

[26] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR 1654527 | Zbl 0923.34056

[27] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Mathematical Monographs. Oxford Univ. Press, 2002. | MR 2036784 | Zbl 1029.93001

[28] A. Millet and M. Sanz-Solé. Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 245-271. | Numdam | MR 2199801 | Zbl 1087.60035

[29] A. Millet and M. Sanz-Sole. Approximation of rough paths of fractional Brownian motion. In Seminar on Stochastic Analysis, Random Fields and Application 275-303. Progress in Probability 59. Birkhäuser, Basel, 2008. | MR 2401962 | Zbl 1142.60027

[30] J. Musielak and W. Orlicz. On generalized variations. I. Studia Math. 18 (1959) 11-41. | MR 104771 | Zbl 0088.26901

[31] J. Musielak and Z. Semadeni. Some classes of Banach spaces depending on a parameter. Studia Math. 20 (1961) 271-284. | MR 137985 | Zbl 0099.09401

[32] D. Nualart. The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer, New York, 1995. | MR 1344217 | Zbl 1099.60003

[33] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006

[34] M. Schreiber. Fermeture en probabilité de certains sous-espaces d'un espace L2. Application aux chaos de Wiener. Z. Wahrsch. Verw. Gebiete 14 (1969/70) 36-48. | MR 413290 | Zbl 0186.49803

[35] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233. Springer, Berlin, 1979. | MR 532498 | Zbl 0426.60069

[36] N. Towghi. Multidimensional extension of L. C. Young's inequality. JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), article 22 (electronic). | MR 1906391 | Zbl 0997.26007

[37] L. C. Young. An inequality of Hölder type connected with Stieltjes integration. Acta Math. 67 (1936) 251-282. | MR 1555421 | Zbl 0016.10404