Soit K un ensemble compact, non-polaire dans ℝm (m≥3) et soit SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} des saucisses de Wiener associées à des processus Browniens indépendants Bi, i=1, 2, 3 initialisés à 0. L'espérance des volumes de ⋂i=13SKi(t) par rapport à la mesure produit est obtenue en termes de la mesure d'équilibre de K lorsque t tend vers l'infini.
Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.
@article{AIHPB_2010__46_2_313_0, author = {Van den Berg, M.}, title = {On the volume of intersection of three independent Wiener sausages}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {313-337}, doi = {10.1214/09-AIHP316}, mrnumber = {2667701}, zbl = {1201.35108}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_2_313_0} }
van den Berg, M. On the volume of intersection of three independent Wiener sausages. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 313-337. doi : 10.1214/09-AIHP316. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_2_313_0/
[1] Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195-237. | MR 1414282 | Zbl 0858.60043
and .[2] Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. | MR 1219313 | Zbl 0761.60061
, and .[3] Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. | MR 2040963 | Zbl 1080.58023
.[4] Table of Integrals, Series and Products. Academic Press, San Diego, 1994. | MR 1243179 | Zbl 0918.65001
and .[5] Inequalities. Cambridge Univ. Press, London, 1952. | MR 46395 | Zbl 0047.05302
, and .[6] Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167-184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. | MR 1311718 | Zbl 0814.60063
, , and .[7] Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. | MR 1117680 | Zbl 0925.60078
.[8] Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389-402. | MR 949180 | Zbl 0655.60067
.[9] Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299-341. | MR 1038444 | Zbl 0697.60081
.[10] Some properties of planar Brownian motion. In École d'Été de Probabilités de Saint-Flour XX, 1990 111-235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. | MR 1229519 | Zbl 0779.60068
.[11] The Self-Avoiding Walk. Birkhäuser, Boston, 1993. | MR 1197356 | Zbl 0872.60076
and .[12] Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492-523. | MR 1055417 | Zbl 0705.60061
.[13] Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. | MR 492329 | Zbl 0413.60067
and .[14] Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110-121. | MR 172343 | Zbl 0126.33505
.[15] Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. | MR 1717054 | Zbl 0815.60077
.[16] On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114-128. | MR 2129767 | Zbl 1077.60056
.[17] Mean curvature and the heat equation. Math. Z. 215 (1994) 437-464. | MR 1262526 | Zbl 0791.58089
and .[18] On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741-782. | MR 2081439 | Zbl 1165.60316
, and .