On the volume of intersection of three independent Wiener sausages
van den Berg, M.
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010), p. 313-337 / Harvested from Numdam

Soit K un ensemble compact, non-polaire dans ℝm (m≥3) et soit SKi(t)={Bi(s)+y: 0≤st, yK} des saucisses de Wiener associées à des processus Browniens indépendants Bi, i=1, 2, 3 initialisés à 0. L'espérance des volumes de ⋂i=13SKi(t) par rapport à la mesure produit est obtenue en termes de la mesure d'équilibre de K lorsque t tend vers l'infini.

Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤st, yK} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.

Publié le : 2010-01-01
DOI : https://doi.org/10.1214/09-AIHP316
Classification:  35K20,  60J65,  60J45
@article{AIHPB_2010__46_2_313_0,
     author = {Van den Berg, M.},
     title = {On the volume of intersection of three independent Wiener sausages},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {46},
     year = {2010},
     pages = {313-337},
     doi = {10.1214/09-AIHP316},
     mrnumber = {2667701},
     zbl = {1201.35108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_2_313_0}
}
van den Berg, M. On the volume of intersection of three independent Wiener sausages. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 313-337. doi : 10.1214/09-AIHP316. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_2_313_0/

[1] S. Albeverio and X. Y. Zhou. Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195-237. | MR 1414282 | Zbl 0858.60043

[2] R. Fernández, J. Fröhlich and A. D. Sokal. Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. | MR 1219313 | Zbl 0761.60061

[3] P. B. Gilkey. Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. | MR 2040963 | Zbl 1080.58023

[4] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, San Diego, 1994. | MR 1243179 | Zbl 0918.65001

[5] G. Hardy, J. Littlewood and G. Polya. Inequalities. Cambridge Univ. Press, London, 1952. | MR 46395 | Zbl 0047.05302

[6] K. M. Khanin, A. E. Mazel, S. B. Shlosman and Ya. G. Sinai. Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167-184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. | MR 1311718 | Zbl 0814.60063

[7] G. Lawler. Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. | MR 1117680 | Zbl 0925.60078

[8] J.-F. Le Gall. Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389-402. | MR 949180 | Zbl 0655.60067

[9] J.-F. Le Gall. Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299-341. | MR 1038444 | Zbl 0697.60081

[10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d'Été de Probabilités de Saint-Flour XX, 1990 111-235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. | MR 1229519 | Zbl 0779.60068

[11] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1993. | MR 1197356 | Zbl 0872.60076

[12] S. C. Port. Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492-523. | MR 1055417 | Zbl 0705.60061

[13] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. | MR 492329 | Zbl 0413.60067

[14] F. Spitzer. Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110-121. | MR 172343 | Zbl 0126.33505

[15] A. S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. | MR 1717054 | Zbl 0815.60077

[16] M. Van Den Berg. On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114-128. | MR 2129767 | Zbl 1077.60056

[17] M. Van Den Berg and J.-F. Le Gall. Mean curvature and the heat equation. Math. Z. 215 (1994) 437-464. | MR 1262526 | Zbl 0791.58089

[18] M. Van Den Berg, E. Bolthausen and F. Den Hollander. On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741-782. | MR 2081439 | Zbl 1165.60316