Symmetric jump processes : localization, heat kernels and convergence
Bass, Richard F. ; Kassmann, Moritz ; Kumagai, Takashi
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010), p. 59-71 / Harvested from Numdam

Nous considérons des processus symétriques purement discontinus. Nous obtenons des estimations locales pour les probabilités de sortie d'une boule, la continuité hölderienne des fonctions harmoniques et des noyaux de la chaleur, et la convergence d'un suite de tels processus.

We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.

Publié le : 2010-01-01
DOI : https://doi.org/10.1214/08-AIHP201
Classification:  60J35,  60J75,  45K05
@article{AIHPB_2010__46_1_59_0,
     author = {Bass, Richard F. and Kassmann, Moritz and Kumagai, Takashi},
     title = {Symmetric jump processes : localization, heat kernels and convergence},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {46},
     year = {2010},
     pages = {59-71},
     doi = {10.1214/08-AIHP201},
     mrnumber = {2641770},
     zbl = {1201.60078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_1_59_0}
}
Bass, Richard F.; Kassmann, Moritz; Kumagai, Takashi. Symmetric jump processes : localization, heat kernels and convergence. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 59-71. doi : 10.1214/08-AIHP201. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_1_59_0/

[1] M. T. Barlow and R. F. Bass. The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 225-257. | Numdam | MR 1023950 | Zbl 0691.60070

[2] M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963-1999. | MR 2465826 | Zbl 1166.60045

[3] M. T. Barlow, A. Grigor'Yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. To appear. | MR 2492992 | Zbl 1158.60039

[4] R. F. Bass and M. Kassmann. Hölder continuity of harmonic functions with respect to operators of variable order. Comm. Partial Diferential Equations 30 (2005) 1249-1259. | MR 2180302 | Zbl 1087.45004

[5] R. F. Bass and T. Kumagai. Symmetric Markov chains on ℤd with unbounded range. Trans. Amer. Math. Soc. 360 (2008) 2041-2075. | MR 2366974 | Zbl 1130.60076

[6] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245-287. | Numdam | MR 898496 | Zbl 0634.60066

[7] Z. Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108 (2003) 27-62. | MR 2008600 | Zbl 1075.60556

[8] Z. Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 (2008) 277-317. | MR 2357678 | Zbl 1131.60076

[9] R. Husseini and M. Kassmann. Markov chain approximations for symmetric jump processes. Potential Anal. 27 (2007) 353-380. | MR 2353972 | Zbl 1128.60071

[10] D. W. Stroock and W. Zheng. Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 619-649. | Numdam | MR 1473568 | Zbl 0885.60065

[11] P. Sztonyk. Regularity of harmonic functions for anisotropic fractional Laplacian. Math. Nachr. To appear. | MR 2604123 | Zbl 1194.47044