On démontre que les quadrangulations aléatoires infinies uniformes définies respectivement par Chassaing-Durhuus et par Krikun ont la même loi.
We prove that the uniform infinite random quadrangulations defined respectively by Chassaing-Durhuus and Krikun have the same distribution.
@article{AIHPB_2010__46_1_190_0, author = {M\'enard, Laurent}, title = {The two uniform infinite quadrangulations of the plane have the same law}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {46}, year = {2010}, pages = {190-208}, doi = {10.1214/09-AIHP313}, mrnumber = {2641776}, zbl = {1201.60009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2010__46_1_190_0} }
Ménard, Laurent. The two uniform infinite quadrangulations of the plane have the same law. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) pp. 190-208. doi : 10.1214/09-AIHP313. http://gdmltest.u-ga.fr/item/AIHPB_2010__46_1_190_0/
[1] Quantum Geometry. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. | MR 1465433 | Zbl 1096.82500
, and .[2] Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 (2003) 935-974. | MR 2024412 | Zbl 1039.60085
.[3] Scaling of percolation on infinite planar maps, i. Preprint, 2005. Available at http://arxiv.org/abs/math/0501006.
.[4] Uniform infinite planar triangulations. Comm. Math. Phys. 241 (2003) 191-213. | MR 2013797 | Zbl 1098.60010
and .[5] Branching Processes. Springer, New York, 1972. | MR 373040 | Zbl 0259.60002
and .[6] Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) 27 pp. (electronic). | MR 2097335 | Zbl 1060.05045
, and .[7] Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 (2006) 879-917. | MR 2243873 | Zbl 1102.60007
and .[8] Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004) 161-212. | MR 2031225 | Zbl 1041.60008
and .[9] Planar maps are well labeled trees. Canad. J. Math. 33 (1981) 1023-1042. | MR 638363 | Zbl 0415.05020
and .[10] A uniformly distributed infinite planar triangulation and a related branching process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 307 (2004) 141-174, 282-283. | MR 2050691 | Zbl 1074.60027
.[11] Local structure of random quadrangulations. Preprint, 2006. Available at http://arxiv.org/abs/math/0512304.
.[12] A new class of probability limit theorems. J. Math. Mech. 11 (1962) 749-772. | MR 148120 | Zbl 0107.35602
.[13] The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007) 621-670. | MR 2336042 | Zbl 1132.60013
.[14] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (2008) 893-918. | MR 2438999 | Zbl 1166.60006
and .[15] Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642-1705. | MR 2349571 | Zbl 1208.05135
and .[16] States spaces of the snake and its tour-convergence of the discrete snake. J. Theoret. Probab. 16 (2004) 1015-1046. | MR 2033196 | Zbl 1044.60083
and .[17] Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 199-207. | Numdam | MR 850756 | Zbl 0601.60082
.[18] Conjugaisons d'arbres et cartes combinatoires aléatoires. Ph.D. thesis, Université de Bordeaux I, 1998.
.[19] A census of planar maps. Canad. J. Math. 15 (1963) 249-271. | MR 146823 | Zbl 0115.17305
.