On étudie la vitesse exacte de convergence de certains schémas d'approximation associés à des équations différentielles stochastiques scalaires dirigées par le mouvement brownien fractionnaire B. On utilise le comportement asymptotique des variations à poids de B, et la limite de l'erreur entre la solution et son approximation est calculée de façon explicite.
Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.
@article{AIHPB_2009__45_4_1085_0, author = {Gradinaru, Mihai and Nourdin, Ivan}, title = {Milstein's type schemes for fractional SDEs}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {1085-1098}, doi = {10.1214/08-AIHP196}, mrnumber = {2572165}, zbl = {1197.60070}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_4_1085_0} }
Gradinaru, Mihai; Nourdin, Ivan. Milstein's type schemes for fractional SDEs. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 1085-1098. doi : 10.1214/08-AIHP196. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_4_1085_0/
[1] Power variation of some integral fractional processes. Bernoulli 12 (2006) 713-735. | MR 2248234 | Zbl 1130.60058
, and .[2] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR 1883719 | Zbl 1047.60029
and .[3] Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1-40. | MR 2387018 | Zbl 1163.34005
.[4] Approximation at first and second order of the m-variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1-26. | MR 2041819 | Zbl 1063.60079
and .[5] m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR 2144234 | Zbl 1083.60045
, , and .[6] Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994.
.[7] On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716-721. | MR 378070 | Zbl 0318.60031
and .[8] Wong-Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331-346. Academic Press, Boston, MA, 1991. | MR 1119837 | Zbl 0762.60047
and .[9] Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271-296. | MR 2290877 | Zbl 1110.60023
and .[10] Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR 1382288 | Zbl 0886.60076
.[11] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR 1654527 | Zbl 0923.34056
.[12] The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. | MR 2456334 | Zbl 1154.60046
and .[13] Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-475. | MR 2246891 | Zbl 1106.65003
.[14] Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294-2333. | MR 2474352 | Zbl 1154.60338
.[15] Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899. | MR 2359060 | Zbl 1141.60043
and .[16] Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639.
, , .[17] Schémas d'approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611-614. | MR 2138713 | Zbl 1075.60073
.[18] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181-197. | MR 2483731 | Zbl 1148.60034
.[19] Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229-1256. | MR 2430706 | Zbl pre05636538
and .[20] Correcting Newton-Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695-711. | MR 2348747 | Zbl 1132.60047
and .[21] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR 1893308 | Zbl 1018.60057
and .[22] Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403-421. | MR 1245252 | Zbl 0792.60046
and .[23] Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275-306. | MR 707643 | Zbl 0512.60041
.[24] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR 1640795 | Zbl 0918.60037
.