Notons D un domaine non borné dans ℝd avec d≥3. Nous montrons que si D contient un domaine uniforme non borné, alors le mouvement brownien réfléchi (RBM) sur ̅D est transient. Par ailleurs, supposons que le RBM X sur ̅D est transient et notons Y son changement de temps par une mesure de Revuz 1D(x)m(x) dx pour une fonction m strictement positive, continue et intégrable sur ̅D. Nous démontrons alors que si il existe un r>0 tel que D∖̅B̅(̅0̅,̅ ̅r̅) soit un domaine uniformément non borné, alors Y admet une unique extension en une diffusion symétrique qui n'est jamais tuée.
Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
@article{AIHPB_2009__45_3_864_0, author = {Chen, Zhen-Qing and Fukushima, Masatoshi}, title = {On unique extension of time changed reflecting brownian motions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {864-875}, doi = {10.1214/08-AIHP301}, mrnumber = {2548508}, zbl = {1189.60141}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_3_864_0} }
Chen, Zhen-Qing; Fukushima, Masatoshi. On unique extension of time changed reflecting brownian motions. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 864-875. doi : 10.1214/08-AIHP301. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_3_864_0/
[1] Étude et extensions du principe de Dirichlet. Ann. Inst. Fourier 3 (1953-1954) 371-419. | Numdam | MR 74540 | Zbl 0067.33002
.[2] On reflected Dirichlet spaces. Probab. Theory Related Fields 94 (1992) 135-162. | MR 1191106 | Zbl 0767.60073
.[3] One-point extensions of symmetric Markov processes by darning. Probab. Theory Related Fields 141 (2008) 61-112. | MR 2372966 | Zbl 1147.60051
and .[4] Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994) 1-15. | MR 1309378 | Zbl 0811.31002
, and .[5] Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953-1954) 305-370. | Numdam | MR 74787 | Zbl 0065.09903
and .[6] Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. | MR 1303354 | Zbl 0838.31001
, and .[7] Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 419-459. | Numdam | MR 2139028 | Zbl 1083.60065
and .[8] Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57 (1991) 172-202. | MR 1191746 | Zbl 0776.30014
and .[9] Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982) 80-147. | MR 676988 | Zbl 0514.31003
and .[10] Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71-78. | MR 631089 | Zbl 0489.30017
.[11] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. | Zbl 0826.31001
and .[12] Sobolev Spaces. Springer, Berlin, 1985. | MR 817985
.[13] Théorie des distributions I, II. Hermann, Paris, 1950, 1951. | MR 209834 | Zbl 0042.11405
.[14] Symmetric Markov Processes. Lecture Notes in Math. 426. Springer, Berlin, 1974. | MR 386032 | Zbl 0296.60038
.[15] Uniform domains. Tohoku Math. J. 40 (1988) 101-118. | MR 927080 | Zbl 0627.30017
.