Soit T un opérateur de Dunford-Schwartz sur un espace de probabilité (Ω, μ). Pour f∈Lp(μ), p>1, nous obtenons des théorèmes ergodiques du type (1/n1/p)∑k=1nTkf→0 μ-p.s. sous des conditions portant sur la croissance de ‖∑k=1nTkf‖p. Lorsque T est induit par une transformation préservant la mesure et que p=2, nous obtenons de meilleurs résultats. Ces derniers sont alors utilisés pour obtenir le théorème central limite «quenched» pour les sommes partielles associées aux fonctionnelles de chaînes de Markov stationnaires et ergodiques. Nous améliorons ainsi des résultats antérieurs de Derriennic-Lin et Wu-Woodroofe.
Let T be Dunford-Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic-Lin and Wu-Woodroofe.
@article{AIHPB_2009__45_3_710_0, author = {Cuny, Christophe and Lin, Michael}, title = {Pointwise ergodic theorems with rate and application to the CLT for Markov chains}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {710-733}, doi = {10.1214/08-AIHP180}, mrnumber = {2548500}, zbl = {1186.37013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_3_710_0} }
Cuny, Christophe; Lin, Michael. Pointwise ergodic theorems with rate and application to the CLT for Markov chains. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 710-733. doi : 10.1214/08-AIHP180. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_3_710_0/
[1] On the one-sided ergodic Hilbert transform. Contemp. Math. 430 (2007) 20-39. | MR 2331323 | Zbl 1134.47007
and .[2] Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory. Israel J. Math. 148 (2005) 41-86. | MR 2191224 | Zbl 1086.60019
and .[3] On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. | Numdam | MR 1743095 | Zbl 0949.60049
and .[4] Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the “central limit theorem.” Discrete Contin. Dyn. Syst. 15 (2006) 143-158. | MR 2191389 | Zbl 1107.37009
.[5] Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | MR 1835290 | Zbl 0988.47009
and .[6] The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Related Fields 119 (2001) 508-528. | MR 1826405 | Zbl 0974.60017
and .[7] The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (2003) 73-76. | MR 1952457 | Zbl 1012.60028
and .[8] The central limit theorem for random walks on orbits of probability preserving transformations. Contemp. Math. 444 (2007) 31-51. | MR 2423622 | Zbl 1130.60026
and .[9] Linear Operators, Part I. Wiley, New York. 1958. | MR 1009162 | Zbl 0084.10402
and .[10] Linear Operators, Part II. Wiley, New York, 1963. | MR 1009163 | Zbl 0128.34803
and .[11] An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0219.60003
.[12] On the dependence of the convergence rate in the SLLN for stationary processes on the rate of decay of correlation function. Theory Probab. Appl. 26 (1981) 706-720. | MR 636767 | Zbl 0488.60040
.[13] Spectral criteria for the existence of generalized ergodic transformations (in Russian). Teor. Veroyatnost. i Primenen. 41(2) (1996) 251-271. (Translation in Theory Probab. Appl. 41 (1996) 247-264 (1997).) | MR 1445750 | Zbl 0881.60038
.[14] A central limit theorem for Markov process. Soviet Math. Doklady 19 (1978) 392-394. | Zbl 0395.60057
and .[15] A remark about a Markov process with normal transition operator. Proc. Third Vilnius Conf. Probab. Statist. 147-148. Akad. Nauk Litovsk., Vilnius, 1981 (in Russian).
and .[16] The central limit theorem for Markov processes with normal transition operator, and a strong form of the central limit theorem. In Limit Theorems for Functionals of Random Walks Sections IV.7 and IV.8. A. Borodin and I. Ibragimov (Eds). Proc. Steklov Inst. Math. 195, 1994. (English translation Amer. Math. Soc., Providence, RI, 1995.)
and .[17] The rate of convergence in ergodic theorems. Russian Math. Surveys 51 (1996) 653-703. | MR 1422228 | Zbl 0880.60024
.[18] Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058
and .[19] Ergodic Theorems. De Gruyter, Berlin, 1985. | MR 797411 | Zbl 0575.28009
.[20] Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR 1782272 | Zbl 1044.60014
and .[21] Moment inequalities and the strong laws of large numbers. Z. Wahrsch. Verw. Gebiete 35 (1976) 299-314. | MR 407950 | Zbl 0314.60023
.[22] A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 (2005) 798-815. | MR 2123210 | Zbl 1070.60025
and .[23] An almost sure invariance principle for additive functionals of Markov chains. Statist. Probab. Lett. 78 (2008) 854-860. | MR 2398359 | Zbl 1139.60317
and .[24] | MR 68139 | Zbl 0064.35404
and . Leçons D'analyse Fonctionnelle, 3rd edition. Akadémiai Kiadó, Budapest, 1955.[25] Uniform bounds under increment conditions. Trans. Amer. Math. Soc. 358 (2006) 911-936. | MR 2177045 | Zbl 1078.60025
.[26] Strong invariance principles for dependent random variables. Ann. Probab. 35 (2007) 2294-2320. | MR 2353389 | Zbl 1166.60307
.[27] Martingale approximations for sums of stationary processes. Ann. Probab. 32 (2004) 1674-1690. | MR 2060314 | Zbl 1057.60022
and .[28] Laws of the iterated logarithm for stationary processes. Ann. Probab. 36 (2008) 127-142. | MR 2370600 | Zbl 1130.60039
and .[29] Trigonometric Series, corrected 2nd edition. Cambridge Univ. Press, Cambridge, UK, 1969. | Zbl 0367.42001
.