Nous commençons par caractériser les fonctions propres croissantes, au sens strict, de la famille d'opérateurs intégro-différentiels (0.1), pour tout α>0, γ≥0, f une function définie sur et suffissament régulière, et où les coefficients , σ≥0 et la mesure ν, qui satisfait la condition d'intégrabilité ∫0∞(1∧r2)ν(dr)<+∞, sont données, de manière unique, par la distribution d'une variable aléatoire infiniment divisible et spectralement négative dont on écrit ψ son exposant caractéristique. L(γ) est le générateur infinitésimal d'un processus positif Fellerien α-auto-similaire, introduit par Lamperti [Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225]. Les fonctions propres sont définies en terme d'une nouvelle famille de séries entières qui contient, par exemple, les fonctions de Bessel modifiées du premier ordre et des généralisations des fonctions de Mittag-Leffler. Nous continuons par montrer que des combinaisons particulières de ces séries entières correspondent à des transformées de Laplace de variables aléatoires positives auto-décomposables ou infiniment divisibles, par rapport à la valeur propre associée mais aussi par rapport au paramètre ψ(γ), ce qui est plus surprenant. En particulier, ceci généralise un résultat de Hartman [Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267-287] sur les fonctions de Bessel modifiées. Finalement, nous calculons, dans certains cas, les fonctions propres décroissantes, ce qui nous permet de caractériser la loi, par le biais de sa transformée de Laplace, de la fonctionnelle exponentielle de certains processus de Lévy spectralement négatifs ayant un premier moment négatif.
We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x>0, γ≥0 and f a smooth function on , where the coefficients , σ≥0 and the measure ν, which satisfies the integrability condition ∫0∞(1∧r2)ν(dr)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ. L(γ) is known to be the infinitesimal generator of a positive α-self-similar Feller process, which has been introduced by Lamperti [Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225]. The eigenfunctions are expressed in terms of a new family of power series which includes, for instance, the modified Bessel functions of the first kind and some generalizations of the Mittag-Leffler function. Then, we show that some specific combinations of these functions are Laplace transforms of self-decomposable or infinitely divisible distributions concentrated on the positive line with respect to the main argument, and, more surprisingly, with respect to the parameter ψ(γ). In particular, this generalizes a result of Hartman [Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267-287] for the increasing solution of the Bessel differential equation. Finally, we compute, for some cases, the associated decreasing eigenfunctions and derive the Laplace transform of the exponential functionals of some spectrally negative Lévy processes with a negative first moment.
@article{AIHPB_2009__45_3_667_0, author = {Pierre, Patie}, title = {Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of L\'evy processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {667-684}, doi = {10.1214/08-AIHP182}, mrnumber = {2548498}, zbl = {1180.31010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_3_667_0} }
Pierre, Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 667-684. doi : 10.1214/08-AIHP182. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_3_667_0/
[1] A propos d'une note de M. Pierre Humbert. C. R. Math. Acad. Sci. Paris 236 (1953) 2031-2032. | MR 55502 | Zbl 0051.30801
.[2] A class of Markov processes which admit a local time. Ann. Probab. 15 (1987) 241-262. | MR 877600 | Zbl 0615.60069
and .[3] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564 | Zbl 0861.60003
.[4] The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389-400. | MR 1918243 | Zbl 1004.60046
and .[5] On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. 11 (2002) 19-32. | Numdam | MR 1986381 | Zbl 1031.60038
and .[6] Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191-212. | MR 2178044
and .[7] Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359-377. | Numdam | MR 898500 | Zbl 0623.60099
and .[8] On construction of Markov processes. Z. Wahrsch. Verw. Gebiete 63 (1983) 433-444. | MR 705615 | Zbl 0494.60071
.[9] Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch. Stoch. Rep. 47 (1994) 71-101. (English version in [38], p. 139-171.) | MR 1787143 | Zbl 0830.60072
, and .[10] Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012-1034. | MR 2243877 | Zbl 1098.60038
and .[11] First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. | MR 143257 | Zbl 0121.13003
and .[12] Markov Processes I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121 122. Academic Press, New York, 1965. | MR 193671 | Zbl 0132.37901
.[13] Higher Transcendental Functions 3. McGraw-Hill, New York, 1955. | MR 66496 | Zbl 0064.06302
, , and .[14] An Introduction to Probability Theory and Its Applications 2, 2nd edition. Wiley, New York, 1971. | Zbl 0219.60003
.[15] The Theory of Stochastic Processes II. Springer, Berlin, 1975. | MR 375463 | MR 2058260 | Zbl 0296.00013
and .[16] Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267-287. | Numdam | MR 404760 | Zbl 0386.34016
.[17] “Normal”“Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2 (1974) 593-607. | MR 370687 | Zbl 0305.60033
and .[18] Quelques résultats relatifs à la fonction de Mittag-Leffler. C. R. Math. Acad. Sci. Paris 236 (1953) 1467-1468. | MR 54107 | Zbl 0050.10404
.[19] Self-similar processes with independent increments associated with Lévy and Bessel processes. Stochastic Process. Appl. 100 (2002) 223-232. | MR 1919614 | Zbl 1059.60052
, and .[20] Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978) 760-770. | MR 501378 | Zbl 0402.60080
.[21] Differential equations of fractional orders: Methods, results and problems. Appl. Anal. 78 (2001) 153-192. | MR 1887959 | Zbl 1031.34002
and .[22] On solution of integral equations of Abel-Volterra type. Differential Integral Equations 8 (1995) 993-1011. | MR 1325543 | Zbl 0823.45002
and .[23] Semi-stable Markov processes. Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225. | MR 307358 | Zbl 0274.60052
.[24] Special Functions and Their Applications. Dover, New York, 1972. | MR 350075 | Zbl 0271.33001
.[25] Wiener's random functions, and other Laplacian random functions. In Proc. Sec. Berkeley Symp. Math. Statist. Probab., 1950 II. 171-187. California Univ. Press, Berkeley, 1951. | MR 44774 | Zbl 0044.13802
.[26] Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process. Appl. 116 (2006) 156-177. | MR 2197972 | Zbl 1090.60046
and .[27] Processus à accroissements indépendants et positifs. Séminaire de probabilités de Strasbourg 3 (1969) 175-189. | Numdam | MR 270446 | Zbl 0181.44901
.[28] Sur la nouvelle function Eα(x). C. R. Math. Acad. Sci. Paris 137 (1903) 554-558. | JFM 34.0435.01
.[29] Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. In press, 2008. | MR 2532690 | Zbl 1171.60009
.[30] Bessel processes and infinitely divisible laws. In Stochastic Integrals (In Proc. Sympos. Univ. Durham, Durham, 1980) 285-370. D. Williams (ed.). Lecture Notes in Math. 851. Springer, Berlin, 1981. | MR 620995 | Zbl 0469.60076
and .[31] Recurrent extensions of self-similar Markov processes and Cramér's condition. Bernoulli 11 (2005) 471-509. | MR 2146891 | Zbl 1077.60055
.[32] Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. | MR 1739520 | Zbl 0973.60001
.[33] Infinite divisibility of probability distributions on the real line. Monographs and Textbooks in Pure and Applied Mathematics 259. Marcel Dekker Inc., New York, 2004. | MR 2011862 | Zbl 1063.60001
and .[34] Itô excursion theory for self-similar Markov processes. Ann. Probab. 22 (1994) 546-565. | MR 1288123 | Zbl 0810.60067
.[35] On the unimodality of L functions. Ann. Math. Stat. 42 (1971) 912-918. | MR 278357 | Zbl 0219.60026
.[36] On a continuous analogue of the stochastic difference equation Xn=ρXn−1+Bn. Stochastic Process. Appl. 12 (1982) 301-312. | MR 656279 | Zbl 0482.60062
.[37] Loi de l'indice du lacet brownien et distribution de Hartman-Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71-95. | MR 576898 | Zbl 0436.60057
.[38] Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin, 2001. | MR 1854494 | Zbl 0999.60004
.