Nous étudions comment les convolutions itérées des mesures de probabilités se comparent pour la domination stochastique. Nous donnons des conditions nécessaires et suffisantes pour l'existence d'un entier n tel que μ*n soit stochastiquement dominée par ν*n, étant données deux mesures de probabilités μ et ν. Nous obtenons en corollaire un théorème similaire pour des vecteurs de Rd et la relation de Schur-domination. Plus spécifiquement, nous démontrons des résultats sur la catalyse en théorie quantique de l'information.
We study how iterated convolutions of probability measures compare under stochastic domination. We give necessary and sufficient conditions for the existence of an integer n such that μ*n is stochastically dominated by ν*n for two given probability measures μ and ν. As a consequence we obtain a similar theorem on the majorization order for vectors in Rd. In particular we prove results about catalysis in quantum information theory.
@article{AIHPB_2009__45_3_611_0, author = {Aubrun, Guillaume and Nechita, Ion}, title = {Stochastic domination for iterated convolutions and catalytic majorization}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {611-625}, doi = {10.1214/08-AIHP175}, mrnumber = {2548496}, zbl = {1179.60008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_3_611_0} }
Aubrun, Guillaume; Nechita, Ion. Stochastic domination for iterated convolutions and catalytic majorization. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 611-625. doi : 10.1214/08-AIHP175. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_3_611_0/
[1] Catalytic majorization and ℓp norms. Comm. Math. Phys. 278 (2008) 133-144. | MR 2367201 | Zbl 1140.81318
and .[2] Classification of nonasymptotic bipartite pure-state entanglement transformations. Phys. Rev. A 65 (2002) 052315.
, and .[3] Matrix Analysis. Springer, New York, 1997. | MR 1477662 | Zbl 0863.15001
.[4] Mathematical structure of entanglement catalysis. Phys. Rev. A (3) 64 (2001) 042314. | MR 1858946
and .[5] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR 1619036 | Zbl 0896.60013
and .[6] Some issues in quantum information theory. J. Comput. Sci. and Technol. 21 (2006) 776-789. | MR 2259604
, , , and .[7] An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. | MR 210154 | Zbl 0138.10207
.[8] Relation between catalyst-assisted entanglement transformation and multiple-copy transformation. Phys. Rev. A (3) 74 (2006) 042312.
, and .[9] Probability and Random Processes, 3rd edition. Oxford University Press, New York, 2001. | MR 2059709 | Zbl 1015.60002
and .[10] Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83 (1999) 3566-3569. | MR 1720174 | Zbl 0947.81016
and .[11] The capacity of hybrid quantum memory. IEEE Trans. Inform. Theory 49 (2003) 1465-1473. | MR 1984935 | Zbl 1063.94030
.[12] Inequalities: Theory of Majorization and Its Applications. Academic Press Inc., New York, 1979. | MR 552278 | Zbl 0437.26007
and .[13] Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83 436 (1999).
.[14] ε-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quantum Inf. Comput. 8 (2008) 0030-0052. | MR 2442328 | Zbl 1154.81322
, , and .[15] Problems and Theorems in Analysis. Springer, Berlin, 1978. | MR 580154 | Zbl 0359.00003
and .[16] Comparison Metrods for Queues and Other Stochastic Models. Wiley, Chichester, 1983. | MR 754339 | Zbl 0536.60085
.[17] Catalytic Transformations for bipartite pure states. J. Phys. A 40 (2007) 12185-12212. | MR 2395024 | Zbl 1138.81011
.