On étudie la loi des plus grandes valeurs propres de matrices aléatoires symétriques réelles et de covariance empirique quand les coefficients des matrices sont à queue lourde. On étend le résultat obtenu par Soshnikov dans (Electron. Commun. Probab. 9 (2004) 82-91) et on montre que le comportement asymptotique des plus grandes valeurs propres est déterminé par les plus grandes entrées de la matrice.
We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab. 9 (2004) 82-91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.
@article{AIHPB_2009__45_3_589_0, author = {Auffinger, Antonio and Ben Arous, G\'erard and P\'ech\'e, Sandrine}, title = {Poisson convergence for the largest eigenvalues of heavy tailed random matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {589-610}, doi = {10.1214/08-AIHP188}, mrnumber = {2548495}, zbl = {1177.15037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_3_589_0} }
Auffinger, Antonio; Ben Arous, Gérard; Péché, Sandrine. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 589-610. doi : 10.1214/08-AIHP188. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_3_589_0/
[1] On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 (1988) 509-521. | MR 950344 | Zbl 0627.62022
, and .[2] Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16 (1988) 1729-1741. | MR 958213 | Zbl 0677.60038
and .[3] Spectral measure of heavy tailed band and covariance random matrices. Commun. Math. Phys. (2009). To appear. | MR 2511659 | Zbl pre05586496
, and .[4] The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (2008) 715-751. | MR 2373441 | Zbl 1157.60005
and .[5] Matrix Analysis. Springer, New York, 1996. | MR 1477662 | Zbl 0863.15001
.[6] Regular Variation. Cambridge Univ. Press, Cambridge, 1987. | MR 898871 | Zbl 0617.26001
, and .[7] On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78 (2007) 10001. | MR 2371333
, and .[8] An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. | MR 210154 | Zbl 0138.10207
.[9] Foundations of Modern Probability. Springer, New York, 2001. | MR 1876169 | Zbl 0996.60001
.[10] The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 (1967) 507-536. | MR 208649 | Zbl 0152.16101
and .[11] Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (2007) 857-884. | MR 2363385 | Zbl 1139.82019
and .[12] Extreme Values, Regular Variation and Point Processes 4. Springer, New York, 1987. | MR 900810 | Zbl 0633.60001
.[13] Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys. 261 (2006) 277-296. | MR 2191882 | Zbl 1130.82313
.[14] A note on universality of the distribution of largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 (2002) 1033-1056. | MR 1933444 | Zbl 1018.62042
.[15] Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351-364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. | MR 2234922 | Zbl 1169.15302
.[16] Poisson statistics for the largest eigenvalue of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82-91. | MR 2081462 | Zbl 1060.60013
.[17] Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999) 697-733. | MR 1727234 | Zbl 1062.82502
.