Nous étudions la régularité trajectorielle de l'opérateur φ↦I(φ)=∫0T〈φ(Xt), dXt〉, où φ est une fonction vectorielle à valeurs dans ℝd appartenant à un certain espace de Banach V, X est un processus stochastique et l'intégrale est une certaine version d'une intégrale stochastique définie via régularisation. Une version continue d'un tel opérateur, interprétée comme une variable aléatoire à valeurs dans le dual topologique de V sera appelée courant stochastique. Nous donnons des conditions suffisantes pour que le courant se situe dans un certain espace de Sobolev de distributions. De plus nous donnons des arguments qui permettent de conjecturer que ces conditions sont aussi nécessaires. Successivement nous vérifions la validité de ces conditions lorsque le processus X est un mouvement brownien fractionnaire (mbf) d-dimensionnel; en particulier, nous identifions la régularité de Sobolev pour un mbf d'indice de Hurst H∈(1/4, 1). Par suite, nous fournissons quelques résultats sur la régularité générale de Sobolev de courants relative à un mouvement brownien standard. Enfin nous discutons une application à un modèle de filaments de vorticité dans un fluide turbulent.
We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture that those are also necessary. Next we verify the sufficient conditions when the process X is a d-dimensional fractional brownian motion (fBm); we identify regularity in Sobolev spaces for fBm with Hurst index H∈(1/4, 1). Next we provide some results about general Sobolev regularity of currents when W is a standard Wiener process. Finally we discuss applications to a model of random vortex filaments in turbulent fluids.
@article{AIHPB_2009__45_2_545_0, author = {Flandoli, Franco and Gubinelli, Massimiliano and Russo, Francesco}, title = {On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {545-576}, doi = {10.1214/08-AIHP174}, mrnumber = {2521413}, zbl = {1171.76019}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_2_545_0} }
Flandoli, Franco; Gubinelli, Massimiliano; Russo, Francesco. On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 545-576. doi : 10.1214/08-AIHP174. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_2_545_0/
[1] Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1/2. Taiwanese J. Math. 5 (2001) 609-632. | MR 1849782 | Zbl 0989.60054
, and .[2] The importance of strictly local martingales; applications to radial Ornstein-Uhlenbeck processes. Probab. Theory Related Fields 115 (1999) 325-355. | MR 1725406 | Zbl 0960.60046
, and .[3] Selfsimilar Processes. Princeton University Press, Princeton, NJ, 2002. | MR 1920153 | Zbl 1008.60003
and .[4] On a probabilistic description of small scale structures in 3D fluids. Annal. Inst. H. Poincaré Probab. Statist. 38 (2002) 207-228. | Numdam | MR 1899111 | Zbl 1017.76074
.[5] The Gibbs ensemble of a vortex filament. Probab. Theory Related Fields 122 (2002) 317-340. | MR 1892850 | Zbl 0992.60058
and .[6] Statistics of a vortex filament model. Electron. J. Prob. 10 (2005) 865-900. | MR 2164032 | Zbl 1109.76026
and .[7] Random Currents and Probabilistic Models of Vortex Filaments. Birkäuser, Basel, 2004. | MR 2096285 | Zbl 1064.60118
and .[8] Probabilistic models of vortex filaments. Czechoslovak Math. J. 51 (2001) 713-731. | MR 1864038 | Zbl 1001.60057
and .[9] Stochastic currents. Stochastic Process. Appl. 115 (2005) 1583-1601. | MR 2158261 | Zbl 1087.60043
, , and .[10] Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. Séminaire de probabilités, XIX, 1983/84 314-331. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR 889492 | Zbl 0563.60072
.[11] Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H≥¼. Ann. Probab. 31 (2003) 1772-1820. | MR 2016600 | Zbl 1059.60067
, and .[12] m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR 2144234 | Zbl 1083.60045
, , and .[13] Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales. Electron. J. Probab. 8 (2003) 26 pp. | MR 2041819 | Zbl 1063.60079
and .[14] Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR 2091358 | Zbl 1058.60037
.[15] System Control and Rough Paths. Oxford University Press, 2002. | MR 2036784 | Zbl 1029.93001
and .[16] Differential equations driven by rough signals. Revista Math. Iberoamericana 14 (1998) 215-310. | MR 1654527 | Zbl 0923.34056
.[17] Probabilistic models for vortex filaments based on fractional Brownian motion. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001) 213-218. | MR 1902426 | Zbl 1011.60032
, and .[18] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. | MR 710486 | Zbl 0516.47023
.[19] Continuous Martingales and Brownian Motion, 3rd edition. Springer-Verlag, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .[20] Stochastic calculus with respect to continuous finite quadratic variation processes. Stochastics Stochastics Rep. 70 (2000) 1-40. | MR 1785063 | Zbl 0981.60053
and .[21] Elements of stochastic calculus via regularization. Séminaire de Probabilités XL 147-186. C. Donati-Martin, M. Emery, A. Rouault and C. Stricker (Eds). Lecture Notes in Math. 1899. Springer, Berlin, Heidelberg, 2007. | MR 2409004 | Zbl 1126.60045
and .[22] Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, 1978. | MR 503903 | Zbl 0387.46032
.