Nous considérons un modèle de marche aléatoire sur ℤ à pas bornés en environnement aléatoire stationnaire ergodique. Dans une première partie, nous détaillons les propriétés géométriques des vecteurs propres de Lyapunov centraux pour la matrice aléatoire naturellement associée à la marche, mettant en lumière le mécanisme du modèle. Nous formulons alors un critère, vectoriel dans les situations transientes, pour l'existence de la mesure invariante absolument continue pour les environnements vus depuis la particule. En corollaire, nous obtenons une caractérisation du régime avec vitesse non nulle.
We consider a model of random walks on ℤ with finite range in a stationary and ergodic random environment. We first provide a fine analysis of the geometrical properties of the central left and right Lyapunov eigenvectors of the random matrix naturally associated with the random walk, highlighting the mechanism of the model. This allows us to formulate a criterion for the existence of the absolutely continuous invariant measure for the environments seen from the particle. We then deduce a characterization of the non-zero-speed regime of the model.
@article{AIHPB_2009__45_1_70_0, author = {Br\'emont, Julien}, title = {One-dimensional finite range random walk in random medium and invariant measure equation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {70-103}, doi = {10.1214/07-AIHP150}, mrnumber = {2500229}, zbl = {1171.60395}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_1_70_0} }
Brémont, Julien. One-dimensional finite range random walk in random medium and invariant measure equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 70-103. doi : 10.1214/07-AIHP150. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_1_70_0/
[1] Asymptotic behaviour for random walks in random environments. J. Appl. Probab. 36 (1999) 334-349. | MR 1724844 | Zbl 0946.60046
.[2] Random Dynamical Systems. Springer, Berlin, 1998. | MR 1723992 | Zbl 0906.34001
.[3] Recurrence and transience of random walks in random environments on a strip. Comm. Math. Phys. 214 (2000) 429-447. | MR 1796029 | Zbl 0985.60092
and .[4] Lingering random walks in random environment on a strip. Comm. Math. Phys. 278 (2008) 253-288. | MR 2367205 | Zbl 1142.82007
and .[5] On the recurrence of random walks on ℤ in random medium. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1011-1016. | MR 1872464 | Zbl 0995.60062
.[6] On some random walks on ℤ in random medium. Ann. Probab. 30 (2002) 1266-1312. | MR 1920108 | Zbl 1021.60034
.[7] Random walks on ℤ in random medium and Lyapunov spectrum. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 309-336. | Numdam | MR 2060456 | Zbl 1042.60022
.[8] Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique. Colloq. Math. 84/85 (2000) 457-480. (Dedicated to the memory of Anzelm Iwanik.) | MR 1784208 | Zbl 0963.37009
and .[9] Positive matrix-valued cocycles over dynamical systems. Uspekhi Mat. Nauk 29 (1974) 219-226. | MR 396906 | Zbl 0314.28015
.[10] Geometric Measure Theory. Springer, New York, 1969. | MR 257325 | Zbl 0176.00801
.[11] Linear and sublinear growth and the CLT for hitting times of a random walk in random environment on a strip. Probab. Theory Related Fields 141 (2008) 471-511. | MR 2391162 | Zbl 1141.60070
.[12] Limit theorems for products of positive random matrices. Ann. Probab. 25 (1997) 1545-1587. | MR 1487428 | Zbl 0903.60027
.[13] Algebraic Topology via Differential Geometry. Cambridge Univ. Press, 1987. | MR 924372 | Zbl 0627.57001
and .[14] Recurrence and transience criteria for a random walk in a random environment. Ann. Probab. 12 (1984) 529-560. | MR 735852 | Zbl 0545.60066
.[15] The averaging method and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40 (1985) 61-120, 238. | MR 786087 | Zbl 0592.60054
.[16] Quelques propriétés des exposants caractéristiques. Ecole d'été de Saint-Flour 1982 305-396. Lecture Notes in Math. 1097. Springer, Berlin, 1984. | MR 876081 | Zbl 0578.60029
.[17] Localization of One-dimensional Random Walks in Random Environments. Harwood Academic Publishers, Chur, 1989. | MR 1122590
.[18] A criterion for the applicability of the central limit theorem to one-dimensional random walks in random environments. Teor. Veroyatnost. i Primenen. 37 (1992) 576-580. | MR 1214365 | Zbl 0771.60051
.[19] A criterion for linear drift, and the central limit theorem for one-dimensional random walks in random environments. Russian Acad. Sci. Sb. Math. 79 (1994) 73-92. | MR 1239753 | Zbl 0815.60067
.[20] A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems. Trudy Moskov. Mat. Obšč. 19 (1968) 179-210. | MR 240280 | Zbl 0236.93034
.[21] Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincaré 28 (1992) 131-148. | Numdam | MR 1158741 | Zbl 0794.58023
.[22] The point of view of the particle on the Law of Large Numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003) 1441-1463. | MR 1989439 | Zbl 1039.60089
.[23] Théorème ergodique multiplicatif. Produits de matrices aléatoires indépendantes. Fascicule de probabilités, Univ. Rennes I, 1997. | Zbl 0947.60008
.[24] Transient random walks on a strip in a random environment. Ann. Probab. 36 (2008) 2354-2387. | MR 2478686 | Zbl 1167.60023
.[25] Topics in random walks in random environment. Lecture given at the School and Conference on Probability Theory, Trieste, May 2002. ICTP Lect. Notes XVII, 2004. | MR 2198849 | Zbl 1060.60102
.[26] Random walks in random environment. Lectures on probability theory and statistics. Ecole d'Eté de probabilités de Saint-Flour XXXI - 2001 191-312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. | MR 2071631 | Zbl 1060.60103
.