A log-Sobolev type inequality for free entropy of two projections
Hiai, Fumio ; Ueda, Yoshimichi
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009), p. 239-249 / Harvested from Numdam

Nous prouvons un genre d'inégalité de Sobolev logarithmique qui montre que l'information de Fisher libre domine l'entropie de micro-états libre adaptée aux projections dans le cas de deux projections.

We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

Publié le : 2009-01-01
DOI : https://doi.org/10.1214/08-AIHP164
Classification:  46L54,  94A17,  60E15
@article{AIHPB_2009__45_1_239_0,
     author = {Hiai, Fumio and Ueda, Yoshimichi},
     title = {A log-Sobolev type inequality for free entropy of two projections},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {45},
     year = {2009},
     pages = {239-249},
     doi = {10.1214/08-AIHP164},
     mrnumber = {2500237},
     zbl = {1178.46066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_1_239_0}
}
Hiai, Fumio; Ueda, Yoshimichi. A log-Sobolev type inequality for free entropy of two projections. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 239-249. doi : 10.1214/08-AIHP164. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_1_239_0/

[1] D. Bakry and M. Emery. Diffusion hypercontractives. Séminaire Probabilités XIX 177-206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR 889476 | Zbl 0561.60080

[2] P. Biane. Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory 1-19. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc. Providence, RI, 1997. | MR 1426833 | Zbl 0873.60056

[3] P. Biane. Logarithmic Sobolev inequalities, matrix models and free entropy. Acta Math. Sinica 19 (2003) 497-506. | MR 2014030 | Zbl 1040.46042

[4] P. Biane, M. Capitaine and A. Guionnet. Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433-459. | MR 1975007 | Zbl 1017.60026

[5] B. Collins. Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Related Fields 133 (2005) 315-344. | MR 2198015 | Zbl 1100.46036

[6] S. Gallot, D. Hulin and J. Lafontaine. Riemannian Geometry, 2nd edition. Universitext, Springer, Berlin, 1990. | MR 1083149 | Zbl 0716.53001

[7] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy. Amer. Math. Soc., Providence, RI, 2000. | MR 1746976 | Zbl 0955.46037

[8] F. Hiai and D. Petz. Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72 (2006) 581-609. | MR 2289756 | Zbl 1121.15024

[9] F. Hiai, D. Petz and Y. Ueda. Free logarithmic Sobolev inequality on the unit circle. Canad. Math. Bull. 49 (2006) 389-406. | MR 2252261 | Zbl 1107.46044

[10] F. Hiai and Y. Ueda. Notes on microstate free entropy of projections. Publ. Res. Inst. Math. Sci. 44 (2008), 49-89. | MR 2405867 | Zbl 1149.46051

[11] R. Hunt, B. Muckenhoupt and R. Wheeden. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973) 227-251. | MR 312139 | Zbl 0262.44004

[12] M. Ledoux. A (one-dimensional) free Brunn-Minkowski inequality. C. R. Math. Acad. Sci. Paris 340 (2005) 301-304. | MR 2121895 | Zbl 1064.60032

[13] G. I. Ol'Shanskij. Unitary representations of infinite dimensional pairs (g, k) and the formalism of R. Howe. In Representation of Lie Groups and Related Topics 269-463. A. M. Vershik and D. P. Zhelobenko (Eds). Adv. Stud. Contemp. Math. 7. Gordon and Breach, New York, 1990. | MR 1104279 | Zbl 0724.22020

[14] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields. Springer, Berlin, 1997. | MR 1485778 | Zbl 0881.31001

[15] C. Villani. Topics in Optimal Transportation. Amer. Math. Soc., Providence, RI, 2003. | MR 1964483 | Zbl 1106.90001

[16] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, I. Comm. Math. Phys. 155 (1993) 71-92. | MR 1228526 | Zbl 0781.60006

[17] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, II. Invent. Math. 118 (1994) 411-440. | MR 1296352 | Zbl 0820.60001

[18] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, IV: Maximum entropy and freeness. In Free Probability Theory 293-302. D. V. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. | MR 1426847 | Zbl 0960.46040

[19] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms. Invent. Math. 132 (1998) 189-227. | MR 1618636 | Zbl 0930.46053

[20] D. Voiculescu. The analogue of entropy and of Fisher's information measure in free probability theory VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101-166. | MR 1711843 | Zbl 0956.46045

[21] D. V. Voiculescu, K. J. Dykema and A. Nica. Free Random Variables. Amer. Math. Soc., Providence, RI, 1992. | MR 1217253 | Zbl 0795.46049