On considère une marche aléatoire simple de taille , que l'on note , et on définit une suite de variables aléatoires i.i.d. et centrées. Pour tous on définit une suite de vecteurs aléatoires i.i.d. On pose , et , et on transforme la mesure de l'ensemble des trajectoires de la marche aléatoire avec le hamiltonien . Cette mesure perturbée décrit un copolymère hydrophobe(phile) en interaction avec une bande de taille 2K autour d'une interface huile-eau. Dans cette article nous prouvons la convergence dans la limite d'un couplage faible (quand , et tendent vers 0) de ce modèle discret vers son homologue continu. Dans ce but, nous développons une technique de coarse graining introduite par Bolthausen et den Hollander dans Ann. Probab. 25 (1997) 1334-1366. Ce résultat montre en particulier que le caractère aléatoire de l'accrochage autour de l'interface disparaît à mesure que le couplage s'affaiblit.
We consider a simple random walk of length , denoted by , and we define a sequence of centered i.i.d. random variables. For we define an i.i.d sequence of random vectors. We set , and , and transform the measure on the set of random walk trajectories with the hamiltonian . This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width around an interface between oil and water. In the present article we prove the convergence in the limit of weak coupling (when , and tend to 0) of this discrete model towards its continuous counterpart. To that aim we further develop a technique of coarse graining introduced by Bolthausen and den Hollander in Ann. Probab. 25 (1997) 1334-1366. Our result shows, in particular, that the randomness of the pinning around the interface vanishes as the coupling becomes weaker.
@article{AIHPB_2009__45_1_175_0, author = {Petrelis, Nicolas}, title = {Copolymer at selective interfaces and pinning potentials : weak coupling limits}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {45}, year = {2009}, pages = {175-200}, doi = {10.1214/07-AIHP160}, mrnumber = {2500234}, zbl = {1172.82318}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_1_175_0} }
Petrelis, Nicolas. Copolymer at selective interfaces and pinning potentials : weak coupling limits. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 175-200. doi : 10.1214/07-AIHP160. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_1_175_0/
[1] Free energy and some sample path properties of a random walk with random potential. J. Statist. Phys. 83 (1996) 573-622. | MR 1386352 | Zbl 1081.82559
and .[2] The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279 (2008) 117-146. | MR 2377630 | Zbl 1175.82034
.[3] Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16 (2006) 636-669. | MR 2244428 | Zbl 1145.82010
and .[4] On the localization transition of random copolymers near selective interfaces. J. Statist. Phys. 117 (2004) 801-818. | MR 2107896 | Zbl 1089.82031
and .[5] A heteropolymer near a linear interface. Ann. Appl. Prob. 25 (1999) 668-876. | MR 1722277 | Zbl 0971.60098
and .[6] Localization for a polymer near an interface. Ann. Probab. 25 (1997) 1334-1366. | MR 1457622 | Zbl 0885.60022
and .[7] A numerical approach to copolymer at selective interfaces. J. Statsit. Phys. 122 (2006) 799-832. | MR 2213950 | Zbl 1149.82357
, and .[8] Effect of disorder on two-dimensional wetting. J. Statist. Phys. 66 (1992) 1189-1213. | MR 1156401 | Zbl 0900.82051
, and .[9] An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1971). | MR 270403 | Zbl 0219.60003
.[10] Localization phenomena in random polymer models. Note for the course in Pisa and in the graduate school of Paris 6, 2003. http://www.proba.jussieu.fr/pageperso/giacomin/pub/publicat.html.
.[11] Random Polymer Models. Imperial College Press, London, 2007. | MR 2380992 | Zbl 1125.82001
.[12] Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Related Fields 133 (2005) 464-482. | MR 2197110 | Zbl 1098.60089
and .[13] The localized phase of a disordered copolymer with adsorption. Alea 1 (2006) 149-180. | MR 2249653 | Zbl 1134.82006
and .[14] Localization of a random copolymer at an interface: an exact enumeration study. J. Phys. A 36 (2003) 11575-11584. | MR 2025861 | Zbl 1039.82016
, and .[15] Pinning by a sparse potential. Stochastic. Process. Appl. 115 (2005) 1323-1331. | MR 2152377 | Zbl 1079.60077
, and .[16] Brownian Motion and Stochastic Calculus. Springer, New York, 1991. | MR 1121940 | Zbl 0734.60060
and .[17] Polymer pinning at an interface. Stoch. Proc. Appl. 116 (2006) 1600-1621. | MR 2269218 | Zbl 1129.82016
.[18] Thesis, University of Rouen, France. Online thesis, 2006.
.[19] Local Time and Invariance. Springer, Berlin, 1981. | MR 655268 | Zbl 0456.60029
.[20] Continuous Martingales and Brownian Motions. Wiley, New York, 1992. | MR 1083357
and .[21] Strong approximation theorems for independent variables and their applications. J. Multivariate Anal. 52 107-130. | MR 1325373 | Zbl 0817.60027
.[22] The statistical mechanics of random copolymers. J. Phys. A: Math. Gen. 37 (2004) R279-R325. | MR 2097625 | Zbl 1073.82015
and .[23] A random walk with a random potential. Theory Probab. Appl. 38 (1993) 382-385. | MR 1317991 | Zbl 0807.60069
.