Pour tester qu’une loi donnée provient d’une famille paramétrique , on est souvent amené à comparer une estimation non paramétrique d’une fonctionnelle de à un élément correspondant à une estimation de . Dans bien des cas, la loi asymptotique de statistiques de tests bâties à partir du processus dépend de la loi inconnue . On montre ici que si les suites et d’estimateurs sont régulières dans un sens précis, le recours au rééchantillonnage paramétrique conduit à des approximations valides des seuils des tests. Autrement dit si et sont des analogues de et déduits d’un échantillon de loi , les processus empiriques et convergent alors conjointement en loi vers des copies indépendantes de la même limite. Ce résultat est employé pour valider l’approche par rééchantillonnage paramétrique dans le cadre de tests d’adéquation pour des familles de lois et de copules multivariées. Deux types de tests sont envisagés : les uns comparent la version empirique d’une loi ou d’une copule et son estimation paramétrique sous l’hypothèse nulle ; les autres mesurent la distance entre les estimations paramétrique et non paramétrique de la loi associée à la transformation intégrale de probabilité classique. La validité du rééchantillonnage à deux degrés est aussi démontrée dans les cas où l’estimation paramétrique est difficile à calculer. La méthodologie est illustrée au moyen d’un nouveau test d’adéquation de copules fondé sur une fonctionnelle de Cramér-von Mises du processus de copule empirique.
In testing that a given distribution belongs to a parameterized family , one is often led to compare a nonparametric estimate of some functional of with an element corresponding to an estimate of . In many cases, the asymptotic distribution of goodness-of-fit statistics derived from the process depends on the unknown distribution . It is shown here that if the sequences and of estimators are regular in some sense, a parametric bootstrap approach yields valid approximations for the -values of the tests. In other words if and are analogs of and computed from a sample from , the empirical processes and then converge jointly in distribution to independent copies of the same limit. This result is used to establish the validity of the parametric bootstrap method when testing the goodness-of-fit of families of multivariate distributions and copulas. Two types of tests are considered: certain procedures compare the empirical version of a distribution function or copula and its parametric estimation under the null hypothesis; others measure the distance between a parametric and a nonparametric estimation of the distribution associated with the classical probability integral transform. The validity of a two-level bootstrap is also proved in cases where the parametric estimate cannot be computed easily. The methodology is illustrated using a new goodness-of-fit test statistic for copulas based on a Cramér-von Mises functional of the empirical copula process.
@article{AIHPB_2008__44_6_1096_0, author = {Genest, Christian and R\'emillard, Bruno}, title = {Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {1096-1127}, doi = {10.1214/07-AIHP148}, mrnumber = {2469337}, zbl = {1206.62044}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_6_1096_0} }
Genest, Christian; Rémillard, Bruno. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 1096-1127. doi : 10.1214/07-AIHP148. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_6_1096_0/
[1] On Kendall's process. J. Multivariate Anal. 58 (1996) 197-229. | MR 1405589 | Zbl 0862.60020
, , and .[2] Minimum distance procedures. In Nonparametric Methods 741-754. Handbook of Statistics 4. North-Holland, Amsterdam, 1984. | MR 831734 | Zbl 0597.62032
.[3] A stochastic minimum distance test for multivariate parametric models. Ann. Statist. 17 (1989) 125-140. | MR 981440 | Zbl 0684.62041
and .[4] The bootstrap in hypothesis testing. In State of the Art in Probability and Statistics (Leiden, 1999) 91-112. IMS Lecture Notes Monogr. Ser. 36. Inst. Math. Statist., Beachwood, OH, 2001. | MR 1836556
and .[5] Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656-1670. | MR 383482 | Zbl 0265.60011
and .[6] Dependence structures for multivariate high-frequency data in finance. In Selected Proceedings from Quantitative Methods in Finance, 2002 (Cairns/Sydney) 3 1-14, 2003. | MR 1972372
, and .[7] The t copula and related copulas. Internat. Statist. Rev. 73 (2005) 111-129. | Zbl 1104.62060
and .[8] A goodness of fit test for copulas based on Rosenblatt's transformation. Comput. Statist. Data Anal. 51 (2007) 4633-4642. | MR 2364470 | Zbl 1162.62343
and .[9] Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1 (1973) 279-290. | MR 359131 | Zbl 0256.62021
.[10] Goodness-of-fit tests for copulas. J. Multivariate Anal. 95 (2005) 119-152. | MR 2164126 | Zbl 1095.62052
.[11] Weak convergence of empirical copula processes. Bernoulli 10 (2004) 847-860. | MR 2093613 | Zbl 1068.62059
, and .[12] Seminar on Empirical Processes. Birkhäuser Verlag, Basel, 1987. | MR 902803 | Zbl 0637.62047
and .[13] A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543-552. | MR 1366280 | Zbl 0831.62030
, and .[14] Tests of serial independence based on Kendall's process. Canad. J. Statist. 30 (2002) 441-461. | MR 1944373 | Zbl 1016.62051
, and .[15] Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand. J. Statist. 33 (2006) 337-366. | MR 2279646 | Zbl 1124.62028
, and .[16] Goodness-of-fit tests for copulas: A review and a power study. Insurance Math. Econom. 43 (2008). In press. | MR 2517885 | Zbl 1161.91416
, and .[17] Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88 (1993) 1034-1043. | MR 1242947 | Zbl 0785.62032
and .[18] Empirical processes based on pseudo-observations. In Asymptotic Methods in Probability and Statistics (Ottawa, ON, 1997) 171-197. North-Holland, Amsterdam, 1998. | MR 1661480 | Zbl 0959.62044
and .[19] Empirical processes based on pseudo-observations. II. The multivariate case. In Asymptotic Methods in Stochastics 381-406. Fields Inst. Commun. 44. Amer. Math. Soc., Providence, RI, 2004. | MR 2106867 | Zbl 1079.60024
and .[20] Empirical-distribution-function goodness-of-fit tests for discrete models. Canad. J. Statist. 24 (1996) 81-93. | MR 1394742 | Zbl 0846.62037
.[21] Copula models for aggregating expert opinions. Oper. Res. 44 (1996) 444-457. | Zbl 0864.90067
and .[22] Efficient estimation in the bivariate normal copula model: Normal margins are least favourable. Bernoulli 3 (1997) 55-77. | MR 1466545 | Zbl 0877.62055
and .[23] Testing the Gaussian copula hypothesis for financial assets dependences. Quant. Finance 3 (2003) 231-250. | MR 1999654
and .[24] The minimum distance method of testing. Metrika 27 (1980) 43-70. | MR 563412 | Zbl 0425.62029
.[25] Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51 (1995) 1384-1399. | MR 1381050 | Zbl 0869.62083
and .[26] Bootstrap based goodness-of-fit tests. Metrika 40 (1993) 243-256. | MR 1235086 | Zbl 0770.62016
, and .[27] Semiparametric estimation in copula models. Canad. J. Statist. 33 (2005) 357-375. | MR 2193980 | Zbl 1077.62022
.[28] Weak Convergence and Empirical Processes. Springer, New York, 1996. | MR 1385671 | Zbl 0862.60002
and .[29] Model selection and semiparametric inference for bivariate failure-time data (with discussion). J. Amer. Statist. Assoc. 95 (2000) 62-76. | MR 1803141 | Zbl 0996.62091
and .