Pour la transformation adique sur l'espace des chemins infinis dans le graphe associé aux nombres Euleriens, il n'existe qu'une seule mesure de probabilité ergodique invariante avec support total. Ce résultat peut justifier en partie une hypothèse fréquente sur l'équidistribution des permutations aléatoires.
There is only one fully supported ergodic invariant probability measure for the adic transformation on the space of infinite paths in the graph that underlies the eulerian numbers. This result may partially justify a frequent assumption about the equidistribution of random permutations.
@article{AIHPB_2008__44_5_876_0, author = {Frick, Sarah Bailey and Petersen, Karl}, title = {Random permutations and unique fully supported ergodicity for the Euler adic transformation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {876-885}, doi = {10.1214/07-AIHP133}, mrnumber = {2453848}, zbl = {1175.37005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_5_876_0} }
Frick, Sarah Bailey; Petersen, Karl. Random permutations and unique fully supported ergodicity for the Euler adic transformation. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 876-885. doi : 10.1214/07-AIHP133. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_5_876_0/
[1] Ergodicity of the adic transformation on the Euler graph. Math. Proc. Cambridge Philos. Soc. 141 (2006) 231-238. | MR 2265871 | Zbl 1112.28012
, , and .[2] Asymptotic properties of Eulerian numbers. Z. Wahrsch. Verw. Gebiete 23 (1972) 47-54. | MR 309856 | Zbl 0226.60049
, , and .[3] Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974. The Art of Finite and Infinite Expansions. | MR 460128 | Zbl 0283.05001
.[4] On the application of the theory of probability to two combinatorial problems involving permutations. In Proceedings of the Seventh Conference on Probability Theory (Braşov, 1982). VNU Sci. Press, Utrecht, 1985. | MR 867425 | Zbl 0619.60013
.[5] Limited scope adic transformations. In preparation. | Zbl 1175.37004 | Zbl pre05617771
.[6] Dynamical properties of some non-stationary, non-simple Bratteli-Vershik systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2006).
.[7] Connections between adic transformations and random walks. In progress.
and .[8] Joint distribution of rises and falls. Ann. Inst. Statist. Math. 52 (2000) 415-425. | MR 1794242 | Zbl 0980.62010
and .[9] On the exact distributions of Eulerian and Simon Newcomb numbers associated with random permutations. Statist. Probab. Lett. 42 (1999) 115-125. | MR 1680086 | Zbl 1057.62503
, and .[10] Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469 (1995) 51-111. | MR 1363826 | Zbl 0834.46053
, and .[11] Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3 (1992) 827-864. | MR 1194074 | Zbl 0786.46053
, and .[12] Dynamical properties of the Pascal adic and related systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2002).
.[13] Dynamical properties of the Pascal adic transformation. Ergodic Theory Dynam. Systems 25 (2005) 227-256. | MR 2122921 | Zbl 1069.37007
and .[14] Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37 (1982). | MR 653094 | Zbl 0504.28019
, and .[15] Random walk generated by random permutations of {1, 2, 3, …, n+1}. J. Phys. A: Math. Gen. 37 (2004) 6221-6241. | MR 2073602 | Zbl 1056.60045
and .[16] Symmetric Gibbs measures. Trans. Amer. Math. Soc. 349 (1997) 2775-2811. | MR 1422906 | Zbl 0873.28008
and .[17] Description of invariant measures for the actions of some infinite-dimensional groups. Dokl. Akad. Nauk SSSR 218 (1974) 749-752. | MR 372161 | Zbl 0324.28014
.[18] Asymptotic theory of characters of the symmetric group. Funkts. Anal. Prilozhen. 15 (1981) 15-27. | MR 639197 | Zbl 0507.20006
and .[19] Locally semisimple algebras, combinatorial theory and the K0-functor. J. Soviet Math. 38 (1987) 1701-1733. | Zbl 0623.46036
and .