Cet article a pour but d'étudier le problème d'estimation non-paramétrique de singularités d'un signal à partir des observations indirectes et bruitées. Les singularités que nous considérons ici sont des points de discontinuité (points de rupture) du signal ou de ses derivées. Nous étudions le modèle où l'on dispose d'observations indirectes d'une transformée linéaire du signal dans le bruit blanc gaussien. Le problème de l'estimation est analysé dans un cadre minimax. Nous obtenons des minorations du risque minimax et nous proposons des estimateurs qui sont optimaux en vitesse de convergence.
We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.
@article{AIHPB_2008__44_5_787_0, author = {Goldenshluger, A. and Juditsky, A. and Tsybakov, Alexandre B. and Zeevi, A.}, title = {Change-point estimation from indirect observations. 1. Minimax complexity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {787-818}, doi = {10.1214/07-AIHP110}, mrnumber = {2453845}, zbl = {1206.62048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_5_787_0} }
Goldenshluger, A.; Juditsky, A.; Tsybakov, A. B.; Zeevi, A. Change-point estimation from indirect observations. 1. Minimax complexity. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 787-818. doi : 10.1214/07-AIHP110. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_5_787_0/
[1] Detecting abrupt changes by wavelet methods. J. Nonparametr. Stat. 14 (2002) 7-29. | MR 1905582 | Zbl 1017.62033
and .[2] Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Upper Saddle River, NJ, 1993. | MR 1210954
and .[3] Penalized maximum likelihood and semiparametric second order efficiency. Ann. Statist. 34 (2006) 169-201. | MR 2275239 | Zbl 1091.62020
. and .[4] Image processing for plane domains: change-point problems for the domain's area. Problems Inform. Transmission 31 (1995) 27-45. | MR 1322213 | Zbl 0897.62107
and .[5] On the estimation of jump points in smooth curves. Ann. Inst. Statist. Math. 51 (1999) 231-251. | MR 1707773 | Zbl 0934.62035
, and .[6] Optimal change-point estimation from indirect observations. Ann. Statist. 34 (2006) 350-372. | MR 2275245 | Zbl 1091.62021
, and .[7] Change-point estimation from indirect observations 2. Adaptation. Annales de l'IHP 44 (2008) 819-836. | Numdam | MR 2453846 | Zbl pre05611463
, , and .[8] Estimation of the time delay of a signal under nuisance parameters. Problems Inform. Transmission 25 (1989) 173-180. | MR 1021195 | Zbl 0705.62080
.[9] The estimation of frequency. J. Appl. Probab. 10 (1973) 510-519. | MR 370977 | Zbl 0271.62122
.[10] Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statist. Probab. Lett. 56 (2002) 329-343. | MR 1892994 | Zbl 0998.62039
and .[11] Statistical Estimation: Asymptotic Theory. Springer, New York, 1981. | MR 620321 | Zbl 0467.62026
and .[12] Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 (1987) 727-730. | MR 927265 | Zbl 0659.62103
.[13] Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. | MR 2144185 | Zbl 1038.62073
.[14] Change-points in nonparametric regression analysis. Ann. Statist. 20 (1992) 737-761. | MR 1165590 | Zbl 0783.62032
.[15] Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 (1997) 503-521. | MR 1615339 | Zbl 0902.62048
.[16] Estimation of a regression function with a sharp change point using boundary wavelets. Statist. Probab. Lett. 66 (2004) 435-448. | MR 2045137 | Zbl 1070.62023
and .[17] The Estimation and Tracking of Frequency. Cambridge University Press, 2001. | MR 1813156 | Zbl 0969.62060
and .[18] Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379-1397. | MR 1647673 | Zbl 0929.62039
.[19] On frequency estimation. Biometrika 74 (1988) 477-484. | MR 967586 | Zbl 0654.62077
and .[20] Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, 1993. Translated from the 1987 Russian original. | MR 1347689 | Zbl 0818.26003
, and .[21] Introduction à l'estimation non-paramétrique. Springer, Berlin, 2004. | MR 2013911 | Zbl 1029.62034
.[22] Weak Convergence and Empirical Processes. Springer, New York, 1996. | MR 1385671 | Zbl 0862.60002
and .[23] Jump and sharp cusp detection by wavelets. Biometrika 82 (1995) 385-397. | MR 1354236 | Zbl 0824.62031
.[24] Detection of the number, locations and amplitudes of jumps. Comm. Statist. Stochastic Models 4 (1988) 445-455. | MR 971600 | Zbl 0666.62080
.[25] Trigonometirc Series, vol. I, 2nd edition. Cambridge University Press, 1959. | MR 107776
.