Change-point estimation from indirect observations. 1. Minimax complexity
Goldenshluger, A. ; Juditsky, A. ; Tsybakov, A. B. ; Zeevi, A.
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008), p. 787-818 / Harvested from Numdam

Cet article a pour but d'étudier le problème d'estimation non-paramétrique de singularités d'un signal à partir des observations indirectes et bruitées. Les singularités que nous considérons ici sont des points de discontinuité (points de rupture) du signal ou de ses derivées. Nous étudions le modèle où l'on dispose d'observations indirectes d'une transformée linéaire du signal dans le bruit blanc gaussien. Le problème de l'estimation est analysé dans un cadre minimax. Nous obtenons des minorations du risque minimax et nous proposons des estimateurs qui sont optimaux en vitesse de convergence.

We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.

Publié le : 2008-01-01
DOI : https://doi.org/10.1214/07-AIHP110
Classification:  62G05,  62G20
@article{AIHPB_2008__44_5_787_0,
     author = {Goldenshluger, A. and Juditsky, A. and Tsybakov, Alexandre B. and Zeevi, A.},
     title = {Change-point estimation from indirect observations. 1. Minimax complexity},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {44},
     year = {2008},
     pages = {787-818},
     doi = {10.1214/07-AIHP110},
     mrnumber = {2453845},
     zbl = {1206.62048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_5_787_0}
}
Goldenshluger, A.; Juditsky, A.; Tsybakov, A. B.; Zeevi, A. Change-point estimation from indirect observations. 1. Minimax complexity. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 787-818. doi : 10.1214/07-AIHP110. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_5_787_0/

[1] A. Antoniadis and I. Gijbels. Detecting abrupt changes by wavelet methods. J. Nonparametr. Stat. 14 (2002) 7-29. | MR 1905582 | Zbl 1017.62033

[2] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Upper Saddle River, NJ, 1993. | MR 1210954

[3] A. S. Dalalyan. G. K. Golubev and A. Tsybakov. Penalized maximum likelihood and semiparametric second order efficiency. Ann. Statist. 34 (2006) 169-201. | MR 2275239 | Zbl 1091.62020

[4] M. I. Freidlin and A. P. Korostelev. Image processing for plane domains: change-point problems for the domain's area. Problems Inform. Transmission 31 (1995) 27-45. | MR 1322213 | Zbl 0897.62107

[5] I. Gijbels, P. Hall and A. Kneip. On the estimation of jump points in smooth curves. Ann. Inst. Statist. Math. 51 (1999) 231-251. | MR 1707773 | Zbl 0934.62035

[6] A. Goldenshluger, A. Tsybakov and A. Zeevi. Optimal change-point estimation from indirect observations. Ann. Statist. 34 (2006) 350-372. | MR 2275245 | Zbl 1091.62021

[7] A. Goldenshluger, A. Tsybakov, A. Juditsky and A. Zeevi. Change-point estimation from indirect observations 2. Adaptation. Annales de l'IHP 44 (2008) 819-836. | Numdam | MR 2453846 | Zbl pre05611463

[8] G. K. Golubev. Estimation of the time delay of a signal under nuisance parameters. Problems Inform. Transmission 25 (1989) 173-180. | MR 1021195 | Zbl 0705.62080

[9] E. J. Hannan. The estimation of frequency. J. Appl. Probab. 10 (1973) 510-519. | MR 370977 | Zbl 0271.62122

[10] J. Huh and K. C. Carriere. Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statist. Probab. Lett. 56 (2002) 329-343. | MR 1892994 | Zbl 0998.62039

[11] I. A. Ibragimov and R. Z. Has'Minski. Statistical Estimation: Asymptotic Theory. Springer, New York, 1981. | MR 620321 | Zbl 0467.62026

[12] A. P. Korostelev. Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 (1987) 727-730. | MR 927265 | Zbl 0659.62103

[13] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. | MR 2144185 | Zbl 1038.62073

[14] H.-G. Müller. Change-points in nonparametric regression analysis. Ann. Statist. 20 (1992) 737-761. | MR 1165590 | Zbl 0783.62032

[15] M. H. Neumann. Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 (1997) 503-521. | MR 1615339 | Zbl 0902.62048

[16] C.-W. Park and W.-C. Kim. Estimation of a regression function with a sharp change point using boundary wavelets. Statist. Probab. Lett. 66 (2004) 435-448. | MR 2045137 | Zbl 1070.62023

[17] B. G. Quinn and E. J. Hannan. The Estimation and Tracking of Frequency. Cambridge University Press, 2001. | MR 1813156 | Zbl 0969.62060

[18] M. Raimondo. Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379-1397. | MR 1647673 | Zbl 0929.62039

[19] J. A. Rice and M. Rosenblatt. On frequency estimation. Biometrika 74 (1988) 477-484. | MR 967586 | Zbl 0654.62077

[20] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, 1993. Translated from the 1987 Russian original. | MR 1347689 | Zbl 0818.26003

[21] A. B. Tsybakov. Introduction à l'estimation non-paramétrique. Springer, Berlin, 2004. | MR 2013911 | Zbl 1029.62034

[22] A. W. Van Der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer, New York, 1996. | MR 1385671 | Zbl 0862.60002

[23] Y. Wang. Jump and sharp cusp detection by wavelets. Biometrika 82 (1995) 385-397. | MR 1354236 | Zbl 0824.62031

[24] Y. Q. Yin. Detection of the number, locations and amplitudes of jumps. Comm. Statist. Stochastic Models 4 (1988) 445-455. | MR 971600 | Zbl 0666.62080

[25] A. Zygmund. Trigonometirc Series, vol. I, 2nd edition. Cambridge University Press, 1959. | MR 107776