Habituellement le problème de l'estimation du drift pour un processus de diffusion est considéré sous l'hypothèse de l'ergodicité. Il l'est moins souvent sous l'hypothèse de nulle-récurrence, car dans ce cas il y a moins de théorèmes limites, et ceux qui existent ne s'appliquent pas à toute la classe nulle-récurrente. Le but de cet article est de démontrer quelques théorèmes limites pour les fonctionnelles additives et martingales dépendantes d'une diffusion récurrente générale (ergodique ou nulle). Ces théorèmes permettent de donner une approche unifiée au problème de l'estimation non-paramétrique par noyau du drift dans le cas unidimensionnel récurrent. Comme exemple on obtient la vitesse de convergence de l'estimateur de Nadaraya-Watson dans le cas d'un drift localement hölderien.
Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach to the problem of non-parametric kernel drift estimation in the one-dimensional recurrent case. As a particular example we obtain the rate of convergence of the Nadaraya-Watson estimator in the case of a locally Hölder-continuous drift.
@article{AIHPB_2008__44_4_771_0, author = {Loukianova, D. and Loukianov, O.}, title = {Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {771-786}, doi = {10.1214/07-AIHP141}, mrnumber = {2446297}, zbl = {1182.62166}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_4_771_0} }
Loukianova, D.; Loukianov, O. Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 771-786. doi : 10.1214/07-AIHP141. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_4_771_0/
[1] Handbook of Brownian Motion - Facts and Formulae. Probability and its Applications. Birkhäuser, Basel, 1996. | MR 1477407 | Zbl 0859.60001
and .[2] Fonctionnelles additives spéciales des processus récurrents au sens de Harris. Z. Wahrsch. Verw. Gebiete 47 (1979) 163-194. | MR 523168 | Zbl 0381.60065
.[3] How often does a Harris recurrent Markov chain recur? Ann. Probab. 27 (1999) 1324-1346. | MR 1733150 | Zbl 0981.60023
.[4] Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Statist. 33 (2005) 2507-2528. | MR 2253093 | Zbl 1084.62079
.[5] On second order minimax estimation of the invariant density for ergodic diffusions. Statist. Decisions 22 (2004) 17-41. | MR 2065989 | Zbl 1057.62066
and .[6] Asymptotic equivalence for a null recurrent diffusion model. Bernoulli 8 (2002) 139-174. | MR 1895888 | Zbl 1040.60067
and .[7] Dynamics adaptive estimation of a scalar diffusion. Prépublication PMA-762, Univ. Paris 6. Available at www.proba.jussieu.fr/mathdoc/preprints/.
, and .[8] Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes. Math. Methods Statist. 10 (2001) 316-330. | MR 1867163 | Zbl 1005.62070
and .[9] On a problem of statistical inference in null recurrent diffusions. Stat. Inference Stoch. Process. 6 (2003) 25-42. | MR 1965183 | Zbl 1012.62091
and .[10] Limit Theorems for Null Recurrent Markov Processes. Providence, RI, 2003. | MR 1949295 | Zbl 1018.60074
and .[11] Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974. | MR 345224 | Zbl 0285.60063
and[12] Limit distributions of some integral functionals for null-recurrent diffusions. Stochastic Process. Appl. 92 (2001) 1-9. | MR 1815176 | Zbl 1047.60078
.[13] Introduction a la theorie des ensembles et a la topologie. Institut de Mathematiques, Universite Geneve, 1966. | MR 231338 | Zbl 0136.19002
.[14] Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. | MR 2144185 | Zbl 1038.62073
.[15] On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multidimensional diffusions. To appear in Stochastic Process. Appl. | Zbl pre05311368
and .[16] Deterministic equivalents of additive functionals of recurrent diffusions and drift estimation. To appear in Stat. Inference Stoch. Process.
and .[17] Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions. In Dependence in Probability and Statistics 269-347. Springer, New York, 2006. | MR 2283262 | Zbl 1102.62086
and .[18] A maximum inequality for continuous martingales and M-estimation in Gaussian white noise model. Ann. Statist. 27 (1999) 675-696. | MR 1714712 | Zbl 0954.62100
.[19] Continuous Martingales and Brownian Motion. Springer, Berlin, 1994. | MR 1303781 | Zbl 0804.60001
and .[20] Diffusions, Markov Processes, and Martingales, Vol. 2, Wiley, New York, 1990. | MR 921238 | Zbl 0826.60002
and .[21] Théorèmes limites pour les processus de Markov récurrents. Unpublished paper, 1988. (See also C.R.A.S. Paris Série I 305 (1987) 841-844.) | MR 923211 | Zbl 0627.60069
.[22] On empirical processes for ergodic diffusions and rates of convergence of M-estimators. Scand. J. Statist. 30 (2003) 443-458. | MR 2002221 | Zbl 1034.62071
.[23] On the rate of convergence of the maximum likelihood estimator in Brownian semimartingale models. Bernoulli 11 (2005) 643-664. | MR 2158254 | Zbl 1092.62079
.[24] Asymptotic behavior of M-estimators and related random field for diffusion process. Ann. Inst. Statist. Math. 42 (1990) 221-251. | MR 1064786 | Zbl 0723.62048
.