Désignons par le -drap Brownien fractionnaire de paramètre défini par , où sont des copies indépendantes du drap Brownien fractionnaire à valeurs réelles . Nous montrons que le temps local de est bicontinu lorsque . Cela résout une conjecture de Xiao et Zhang (Probab. Theory Related Fields 124 (2002)). Nous obtenons aussi des résultats fins concernant la régularité Hölderienne, locale et globale, du temps local. Ces résultats nous permettent d’étudier certaines propriétés analytiques et géométriques des trajectoires de .
Let be an -fractional brownian sheet with index defined by , where are independent copies of a real-valued fractional brownian sheet . We prove that if , then the local times of are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields 124 (2002)). We also establish sharp local and global Hölder conditions for the local times of . These results are applied to study analytic and geometric properties of the sample paths of .
@article{AIHPB_2008__44_4_727_0, author = {Ayache, Antoine and Wu, Dongsheng and Xiao, Yimin}, title = {Joint continuity of the local times of fractional brownian sheets}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {727-748}, doi = {10.1214/07-AIHP131}, mrnumber = {2446295}, zbl = {1180.60032}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_4_727_0} }
Ayache, Antoine; Wu, Dongsheng; Xiao, Yimin. Joint continuity of the local times of fractional brownian sheets. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 727-748. doi : 10.1214/07-AIHP131. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_4_727_0/
[1] The Geometry of Random Fields. Wiley, New York, 1981. | MR 611857 | Zbl 0478.60059
.[2] Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31-43. | MR 1906407 | Zbl 1006.60029
, and .[3] Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR 2169474 | Zbl 1088.60033
and .[4] Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415.
, and .[5] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | MR 239652 | Zbl 0184.40801
.[6] Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR 307320 | Zbl 0246.60038
.[7] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR 317397 | Zbl 0264.60024
.[8] Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215-236. | MR 1988750 | Zbl 1034.60038
and .[9] Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810-817. | MR 659550 | Zbl 0492.60032
and .[10] Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127-166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. | MR 1975519 | Zbl 1042.60031
.[11] Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357-382. | MR 1777539 | Zbl 0971.60041
.[12] Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195-228. | MR 618272 | Zbl 0471.60046
.[13] Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR 556414 | Zbl 0499.60081
and .[14] A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86-107. | MR 723731 | Zbl 0536.60046
, and .[15] Inequalities. Cambridge Univ. Press, 1934. | JFM 60.0169.01 | Zbl 0010.10703
.[16] An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447-456. | MR 178494 | Zbl 0132.12701
.[17] Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. | MR 1914748 | Zbl 1005.60005
.[18] Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817-843. | MR 2261054 | Zbl 1111.60020
, and .[19] Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125-3151. | MR 2299449 | Zbl 1124.60037
and .[20] Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193-216. | MR 1961619 | Zbl 1075.60520
, and .[21] Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213-239. | MR 1822902 | Zbl 0982.60024
and .[22] A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179-185. | MR 976063 | Zbl 0668.60044
.[23] A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. | Zbl 1157.60030
and .[24] Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141-163. | MR 1922562 | Zbl 0986.60056
and .[25] Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR 471055 | Zbl 0382.60055
.[26] Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1-31. | MR 130336 | Zbl 0145.28701
and .[27] Self-intersections of random fields. Ann. Probab. 12 (1984) 108-119. | MR 723732 | Zbl 0536.60066
.[28] Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767-775. | MR 1334170 | Zbl 0830.60034
.[29] Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | MR 2296726 | Zbl 1127.60032
and .[30] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129-157. | MR 1469923 | Zbl 0882.60035
.[31] Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157-193. | Numdam | MR 2225751 | Zbl 1128.60041
.[32] Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. | Zbl 1167.60011
.[33] Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204-226. | MR 1936017 | Zbl 1009.60024
and .