Skew-product representations of multidimensional Dunkl Markov processes
Chybiryakov, Oleksandr
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008), p. 593-611 / Harvested from Numdam

Dans cet article nous obtenons des produits semi-directs des processus de Dunkl multidimensionnels qui généralisent ceux obtenus en dimension 1 dans L. Gallardo and M. Yor. Some remarkable properties of the Dunkl martingales. In Séminaire de Probabilités XXXIX, 2006. Nous étudions les processus de Dunkl radiaux qui sont les projections des processus de Dunkl sur une chambre de Weyl.

In this paper we obtain skew-product representations of the multidimensional Dunkl processes which generalize the skew-product decomposition in dimension 1 obtained in L. Gallardo and M. Yor. Some remarkable properties of the Dunkl martingales. Séminaire de Probabilités XXXIX, 2006. We also study the radial part of the Dunkl process, i.e. the projection of the Dunkl process on a Weyl chamber.

Publié le : 2008-01-01
DOI : https://doi.org/10.1214/07-AIHP108
Classification:  60J75,  60J25
@article{AIHPB_2008__44_4_593_0,
     author = {Chybiryakov, Oleksandr},
     title = {Skew-product representations of multidimensional Dunkl Markov processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {44},
     year = {2008},
     pages = {593-611},
     doi = {10.1214/07-AIHP108},
     mrnumber = {2446290},
     zbl = {1180.60072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_4_593_0}
}
Chybiryakov, Oleksandr. Skew-product representations of multidimensional Dunkl Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 593-611. doi : 10.1214/07-AIHP108. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_4_593_0/

[1] J.-P. Anker, P. Bougerol and T. Jeulin. The infinite Brownian loop on a symmetric space. Rev. Mat. Iberoamericana 18 (2002) 41-97. | MR 1924687 | Zbl 1090.58020

[2] P. Biane, P. Bougerol and N. O'Connell. Littelmann paths and Brownian paths. Duke Math. J. 130 (2005) 127-167. | MR 2176549 | Zbl 1161.60330

[3] O. Chybiryakov. Processus de Dunkl et relation de Lamperti. PhD Thesis, University Paris 6, 2006.

[4] C. F. Dunkl and Y. Xu. Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge, 2001. | MR 1827871 | Zbl 0964.33001

[5] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049

[6] A. R. Galmarino. Representation of an isotropic diffusion as a skew product. Z. Wahrsch. Verw. Gebiete 1 (1962/1963) 359-378. | MR 148118 | Zbl 0109.36303

[7] L. Gallardo and M. Yor. An absolute continuity relationship between two multidimensional Dunkl processes. Private communication, 2005.

[8] L. Gallardo and M. Yor. Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Related Fields 132 (2005) 150-162. | MR 2136870 | Zbl 1087.60058

[9] L. Gallardo and M. Yor. A chaotic representation property of the multidimensional Dunkl processes. Ann. Probab. 34 (2006) 1530-1549. | MR 2257654 | Zbl 1107.60015

[10] L. Gallardo and M. Yor. Some remarkable properties of the Dunkl martingales. Séminaire de Probabilités XXXIX 337-356. Lecture Notes in Math. 1874. Springer, Berlin, 2006. | MR 2276903 | Zbl 1128.60027

[11] K. Itô and H. P. Mckean Jr. Diffusion Processes and Their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften, Band 125. Academic Press Inc., Publishers, New York, 1965. | MR 199891 | Zbl 0285.60063

[12] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Co., Amsterdam, 1981. | MR 637061 | Zbl 0495.60005

[13] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Springer-Verlag, New York, 1991. | MR 1121940 | Zbl 0734.60060

[14] H. Kunita. Absolute continuity of Markov processes and generators. Nagoya Math. J. 36 (1969) 1-26. | MR 250387 | Zbl 0186.51203

[15] S. Lawi. Towards a characterization of Markov processes enjoying the time-inversion property. J. Theoret. Probab. 21 (2008) 144-168. | MR 2384476 | Zbl 1141.60046

[16] H. P. Mckean Jr. Stochastic Integrals. Academic Press, New York, 1969. | MR 247684 | Zbl 0191.46603

[17] E. J. Pauwels and L. C. G. Rogers. Skew-Product Decompositions of Brownian Motions. Geometry of Random Motion (Ithaca, N.Y., 1987), pp. 237-262. Contemp. Math. 73. Amer. Math. Soc., Providence, RI, 1988. | MR 954643 | Zbl 0656.58034

[18] M. Rösler. Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998) 519-542. | MR 1620515 | Zbl 0908.33005

[19] M. Rösler. Dunkl operators: theory and applications. Orthogonal Polynomials and Special Functions (Leuven, 2002), pp. 93-135. Lecture Notes in Math. 1817. Springer, Berlin, 2003. | MR 2022853 | Zbl 1029.43001

[20] M. Rösler and M. Voit. Markov processes related with Dunkl operators. Adv. in Appl. Math. 21 (1998) 575-643. | MR 1652182 | Zbl 0919.60072

[21] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer-Verlag, Berlin, 1999. | MR 1725357 | Zbl 0917.60006

[22] M. Yor. Exponential Functionals of Brownian Motion and Related Processes. Springer-Verlag, Berlin, 2001. (With an introductory chapter by Hélyette Geman, Chapters 1, 3, 4, 8 translated from the French by Stephen S. Wilson.) | MR 1854494 | Zbl 0999.60004