Nous dérivons un principe d'invariance presque sûr pour les marches aléatoires en milieu aléatoire dont les transitions sont données par des poids indexés par des cycles bornés. A cet effet nous adaptons la démonstration pour les marches symétriques en milieu aléatoire de Sidoravicius et Sznitman (Probab. Theory Related Fields 129 (2004) 219-244) dans le cas non réversible.
We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219-244) to the non-reversible setting.
@article{AIHPB_2008__44_3_574_0, author = {Deuschel, Jean-Dominique and K\"osters, Holger}, title = {The quenched invariance principle for random walks in random environments admitting a bounded cycle representation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {574-591}, doi = {10.1214/07-AIHP122}, mrnumber = {2451058}, zbl = {1176.60085}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_3_574_0} }
Deuschel, Jean-Dominique; Kösters, Holger. The quenched invariance principle for random walks in random environments admitting a bounded cycle representation. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 574-591. doi : 10.1214/07-AIHP122. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_3_574_0/
[1] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | MR 2278453 | Zbl 1107.60066
and .[2] Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007) 1323-1348. | MR 2354160 | Zbl 1127.60093
and .[3] Ten Lectures on Random Media. Birkhäuser, Basel, 2002. | MR 1890289 | Zbl 1075.60128
and .[4] Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245-287. | Numdam | MR 898496 | Zbl 0634.60066
, and .[5] Nash inequalities for finite Markov chains. J. Theoret. Probab. 9 (1996) 459-510. | MR 1385408 | Zbl 0870.60064
and .[6] Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058
and .[7] A note on the central limit theorem for two-fold stochastic random walks in a random environment. Bull. Polish Acad. Sci. Math. 51 (2003) 217-232. | MR 1990811 | Zbl 1057.60098
and .[8] The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (1985) 73-145. | MR 786087 | Zbl 0615.60063
.[9] Fluctuations in Markov Processes. Book in progress. Available at http://w3.impa.br/~landim/notas.html.
, and .[10] Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Bras. Mat. 31 (2000) 241-275. | MR 1817088 | Zbl 0983.60100
, and .[11] Carne-Varopoulos bounds for centered random walks. Ann. Probab. 34 (2006) 987-1011. | MR 2243876 | Zbl 1099.60049
.[12] Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR 2384074 | Zbl pre05264685
.[13] Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287-2307. | MR 2345229 | Zbl 1131.82012
and .[14] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR 2063376 | Zbl 1070.60090
and .[15] Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion. Ann. Inst. H. Poincaré 31 (1995) 273-285. | Numdam | MR 1340041 | Zbl 0816.60093
.[16] Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press, 2000. | MR 1743100 | Zbl 0951.60002
.