Dans le modèle de régression avec erreurs sur les variables, nous observons v.a. i.i.d. de même loi que satisfaisant aux relations et , où les v.a. sont indépendantes, pas observées, et la fonction de régression est connue à un paramètre de dimension finie près. Les densités de et de sont inconnues tandis que la loi de est entièrement connue. Nous estimons le paramètre à partir des observations . Nous proposons une procédure d’estimation basée sur le critère des moindres carrés , où est une fonction de poids à choisir. Nous définissons l’estimateur et calculons la borne supérieure du risque de cet estimateur, qui dépend de la régularité de la densité des erreurs et de la régularité en de . De plus, nous établissons des conditions suffisantes pour que les estimateurs atteignent la vitesse paramétrique. Nous décrivons des méthodes pratiques pour le choix de dans le cas des fonctions de régression non-linéaires qui sont régulières par morceaux permettant de gagner des ordres de vitesse allant jusqu’à la vitesse paramétrique dans certains cas. Nous considérons également des extensions de cette procédure d’estimation, en particulier au cas où un choix de dépendant de serait plus approprié.
In the regression model with errors in variables, we observe i.i.d. copies of satisfying and involving independent and unobserved random variables plus a regression function , known up to a finite dimensional . The common densities of the ’s and of the ’s are unknown, whereas the distribution of is completely known. We aim at estimating the parameter by using the observations . We propose an estimation procedure based on the least square criterion where is a weight function to be chosen. We propose an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density and on the smoothness properties of . Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of in the case of nonlinear regression functions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation procedure, in particular, when a choice of depending on would be more appropriate.
@article{AIHPB_2008__44_3_393_0, author = {Butucea, Cristina and Taupin, Marie-Luce}, title = {New $M$-estimators in semi-parametric regression with errors in variables}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {393-421}, doi = {10.1214/07-AIHP107}, zbl = {1206.62068}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_3_393_0} }
Butucea, Cristina; Taupin, Marie-Luce. New $M$-estimators in semi-parametric regression with errors in variables. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 393-421. doi : 10.1214/07-AIHP107. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_3_393_0/
[1] A consistent estimator in general functional errors-in-variables models. Metrika 51 (2000) 117-132 (electronic). | MR 1790927 | Zbl 1093.62552
.[2] Efficient and Adaptative Estimation for Semiparametric Model. Johns Hopkins Univ. Press, Baltimore, MD, 1993. | MR 1245941 | Zbl 0786.62001
, , and .[3] Efficient estimation in the errors-in-variables model. Ann. Statist. 15 (1987) 513-540. | MR 888423 | Zbl 0643.62029
and .[4] Probability and Measure, 3rd edition. Wiley. New York, 1995. | MR 1324786 | Zbl 0822.60002
[5] Measurement Error in Nonlinear Models. Chapman and Hall, London, 1995. | MR 1630517 | Zbl 0853.62048
, and .[6] On the polynomial functionnal relationship. J. Roy. Statist. Soc. Ser. B 47 (1985) 510-518. | MR 844482
and .[7] On estimating linear relationships when both variables are subject to errors. J. Roy. Statist. Soc. Ser. B 56 (1994) 167-183. | MR 1257805 | Zbl 0800.62453
and .[8] Semiparametric estimation in the (auto)-regressive β-mixing model with errors-in-variables. Math. Methods Statist. 10 (2001) 121-160. | MR 1851745 | Zbl 1005.62036
and .[9] Asymptotic properties in space and time of an estimator in nonlinear functional errors-in-variables models. Random Oper. Stochastic Equations 7 (1999) 389-412. | MR 1709899 | Zbl 0953.62061
, , , and .[10] Asymptotic properties of estimators in nonlinear functional errors-in-variables with dependent error terms. J. Math. Sci. (New York) 92 (1998) 3890-3895. | MR 1666219 | Zbl 0919.62062
and .[11] Asimptotika: integraly i ryady. “Nauka”, Moscow, 1987. | MR 950167
.[12] Measurement Error Models. Wiley, New York, 1987. | MR 898653 | Zbl 0800.62413
.[13] Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. Contemp. Math. 112 (1990) 99-114. | MR 1087101 | Zbl 0722.62044
.[14] Identification and estimation of polynomial errors-in-variables models. J. Econometrics 50 (1991) 273-295. | MR 1147115 | Zbl 0745.62065
, , and .[15] Nonlinear errors in variables estimation of some engel curves. J. Econometrics 65 (1995) 205-233. | MR 1324193 | Zbl 0825.62955
, and .[16] A simple estimator for nonlinear error in variable models. J. Econometrics 117 (2003) 1-19. | MR 2002282 | Zbl 1022.62047
and .[17] Consistent estimation for some nonlinear errors-in-variables models. J. Econometrics 41 (1989) 159-185. | MR 1007729 | Zbl 0705.62105
.[18] Estimation of nonlinear errors-in-variables models: an approximate solution. Statist. Papers 38 (1997) 1-25. | MR 1474937 | Zbl 0883.62066
, and .[19] Estimation of structural nonlinear errors-in-variables models by simulated least-squares method. Internat. Econom. Rev. 41 (2000) 523-542. | MR 1760462
and .[20] Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27 (1956) 887-906. | MR 86464 | Zbl 0073.14701
and .[21] Comparing different estimators in a nonlinear measurement error model. I. Math. Methods Statist. 14 (2005) 53-79. | MR 2158071
and .[22] Comparing different estimators in a nonlinear measurement error model. II. Math. Methods Statist. 14 (2005) 203-223. | MR 2160395
and .[23] Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. | MR 1643256 | Zbl 1103.62332
and .[24] Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator. Statist. Probab. Lett. 47 (2000) 243-248. | MR 1747484 | Zbl 1054.62563
.[25] Robust and consistent estimation of nonlinear errors-in-variables models. J. Econometrics 110 (2002) 1-26. | MR 1920960 | Zbl 1030.62034
.[26] Likelihood inference in the errors-in-variables model. J. Multivariate Anal. 59 (1996) 81-108. | MR 1424904 | Zbl 0865.62032
and .[27] Limit Theorems of Probability Theory. Oxford Science Publications, New York, 1995. | MR 1353441 | Zbl 0826.60001
.[28] Identifiability of a linear relation between variables which are subject to error. Econometrica. 18 (1950) 375-389. | MR 38054 | Zbl 0040.22502
.[29] Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Statist. 29 (2001) 66-93. | MR 1833959 | Zbl 1029.62039
.[30] Semiparametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1999) 331-457. Lecture Notes in Math. 1781. Berlin, Springer, 2002. | MR 1915446 | Zbl 1013.62031
.[31] Estimating a real parameter in a class of semiparametric models. Ann. Statist. 16 (1988) 1450-1474. | MR 964933 | Zbl 0665.62034
.[32] Efficient estimation in semi-parametric mixture models. Ann. Statist. 24 (1996) 862-878. | MR 1394993 | Zbl 0860.62029
.[33] Estimation of nonlinear errors-in variables models. Ann. Statist. 10 (1982) 539-548. | MR 653528 | Zbl 0512.62065
and .[34] Estimation of the quadratic errors-in-variables model. Biometrika 69 (1982) 175-182. | Zbl 0555.62056
and .