Nous prouvons une inégalité isopérimétrique pour la mesure uniforme sur la boule unité de . Si , alors , où est la mesure de surface associée à et est une constante absolue. En particulier, les boules unités de vérifient la conjecture de Kannan-Lovász-Simonovits (Discrete Comput. Geom. 13 (1995)) sur la constante de Cheeger d'un corps convexe isotrope. La démonstration s'appuie sur les inégalités isopérimétriques de Bobkov (Ann. Probab. 27 (1999)) et de Barthe-Cattiaux-Roberto (Rev. Math. Iberoamericana 22 (2006)), et utilise la représentation de établie par Barthe-Guédon-Mendelson-Naor (Ann. Probab. 33 (2005)) ainsi qu'un argument de découpage.
The normalised volume measure on the unit ball satisfies the following isoperimetric inequality: the boundary measure of a set of measure is at least , where .
@article{AIHPB_2008__44_2_362_0, author = {Sodin, Sasha}, title = {An isoperimetric inequality on the $\ell \_p$ balls}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {362-373}, doi = {10.1214/07-AIHP121}, zbl = {1181.60025}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_362_0} }
Sodin, Sasha. An isoperimetric inequality on the $\ell _p$ balls. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 362-373. doi : 10.1214/07-AIHP121. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_362_0/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976) 165. | MR 420406 | Zbl 0327.49043
.[2] Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002) 32-55. | MR 1904555 | Zbl 0999.60017
.[3] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2005) 993-1067. | MR 2320410 | Zbl 1118.26014
, and .[4] A probabilistic approach to the geometry of the ℓnp-ball. Ann. Probab. 33 (2005) 480-513. | MR 2123199 | Zbl 1071.60010
, , and .[5] Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481-497. | MR 2052235 | Zbl 1072.60008
and .[6] Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903-1921. | MR 1742893 | Zbl 0964.60013
.[7] Spectral gap and concentration for some spherically symmetric probability measures. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 37-43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. | MR 2083386 | Zbl 1052.60003
.[8] An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997) 206-214. | MR 1428506 | Zbl 0883.60031
.[9] On isoperimetric constants for log-concave probability distributions. Lecture Notes in Math. 1910 (2007) 81-88. | MR 2347041 | Zbl 1132.60301
.[10] Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35-48. | MR 1387625 | Zbl 0859.60048
.[11] Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184-205. | MR 1428505 | Zbl 0878.60013
and .[12] Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 829. | MR 2146071 | Zbl 1161.46300
and .[13] Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312 (1979) 80-100. | MR 549959 | Zbl 0415.52008
and .[14] The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975) 207-216. | MR 399402 | Zbl 0311.60007
.[15] On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (Notes of GAFA Seminar) 127-137. Lecture Notes in Math. 1469. Springer, Berlin, 1991. | MR 1122617 | Zbl 0773.46013
.[16] Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3 (1967) 152. (English translation: Potential theory and function theory for irregular regions. Seminars in Mathematics. V. A. Steklov Mathematical Institute, Leningrad, Vol. 3, Consultants Bureau, New York, 1969) | MR 227447 | Zbl 0177.37502
and .[17] Normal and integral currents. Ann. of Math. (2) 72 (1960) 458-520. | MR 123260 | Zbl 0187.31301
and .[18] On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16 (2006) 1274-1290. | MR 2276540 | Zbl 1113.52014
.[19] Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541-559. | MR 1318794 | Zbl 0824.52012
, and .[20] Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry. Vol. IX 219-240. Int. Press, Somerville, MA, 2004. | MR 2195409 | Zbl 1061.58028
.[21] Between Sobolev and Poincaré. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 147-168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR 1796718 | Zbl 0986.60017
and .[22] Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk SSSR 133 (1960) 527-530. (Russian). Translated as Soviet Math. Dokl. 1 (1960) 882-885. | MR 126152 | Zbl 0114.31001
.[23] Concentration of mass on isotropic convex bodies. C. R. Math. Acad. Sci. Paris 342 (2006) 179-182. | MR 2198189 | Zbl 1087.52002
.[24] On the volume of the intersection of two Lnp balls. Proc. Amer. Math. Soc. 110 (1990) 217-224. | MR 1015684 | Zbl 0704.60017
and .[25] Concentration on the ℓnp ball. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 245-256. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR 1796723 | Zbl 0971.46009
and .[26] Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974) 14-24, 165. (Russian). | MR 365680 | Zbl 0351.28015
and .