Soit une suite de variables aléatoires i.i.d. bornées supérieurement et inférieurement par des constantes finies et strictement positives. Nous étudions le théorème central limite «quenched» pour la position d’une particule marquée dans l’exclusion simple symmétrique unidimensionnelle où les variables d’occupation des sites et sont échangés à taux . Nous démontrons que la position de la particule marquée converge à l’échelle diffusive vers un processus gaussien si les particules sont initiallement distribuées d’après une mesure de Bernoulli associée à un profil lisse .
For a sequence of i.i.d. random variables bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at jumps to at rate . We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder . We prove that the position of the tagged particle converges under diffusive scaling to a gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile .
@article{AIHPB_2008__44_2_341_0, author = {Jara, M. D. and Landim, Claudio}, title = {Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {341-361}, doi = {10.1214/07-AIHP112}, mrnumber = {2446327}, zbl = {1195.60124}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_341_0} }
Jara, M. D.; Landim, C. Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 341-361. doi : 10.1214/07-AIHP112. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_341_0/
[1] Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR 2357386 | Zbl 1144.60058
.[2] Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245-287. | Numdam | MR 898496 | Zbl 0634.60066
, and .[3] Explicit constants for Gaussian upper bounds on heat kernels. Amer. J. Math. 109 (1987) 319-333. | MR 882426 | Zbl 0659.35009
.[4] Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127 (2003) 535-608. | MR 2021195 | Zbl 1052.60083
and .[5] The symmetric simple exclusion process I: Probability estimates. Stochastic Process. Appl. 39 (1991) 89-105. | MR 1135087 | Zbl 0749.60094
, , and .[6] Equilibrium fluctuations for zero range processes in random environment. Stochastic Process. Appl. 77 (1998) 187-205. | MR 1649004 | Zbl 0935.60082
, and .[7] Generalized Onstein-Uhlenbeck processes and infinite branching Brownian motions. Kyoto Univ. R.I.M.S 14 (1978) 741-814. | MR 527199 | Zbl 0412.60065
and .[8] Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 567-577. | Numdam | MR 2259975 | Zbl 1101.60080
and .[9] Scaling Limit of Interacting Particles. Springer, Berlin, 1999. | MR 1707314
and .[10] Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Comm. Math. Phys. 106 (1986) 1-19. | MR 834478 | Zbl 0588.60058
and .[11] The diffusion limit for reversible jump processes on ℤd with ergodic random bond conductivities. Comm. Math. Phys. 90 (1983) 27-68. | MR 714611 | Zbl 0523.60097
.[12] Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Bras. Mat. 31 (2000) 241-275. | MR 1817088 | Zbl 0983.60100
, and .[13] Equilibrium fluctuations for driven tracer particle dynamics. Stochastic Process. Appl. 85 (2000) 139-158. | MR 1730614 | Zbl 0997.60121
and .[14] Interacting Particle Systems. Springer, New York, 1985. | MR 776231 | Zbl 0559.60078
.[15] Tightness of probabilities on C([0, 1]; S') and D([0, 1]; S'). Ann. Probab. 11 (1983) 989-999. | MR 714961 | Zbl 0527.60004
.[16] Symmetric random walk in random environment in one dimension. Period. Math. Hungar. 45 (2002) 101-120. | MR 1955197 | Zbl 1064.60202
.[17] Hydrodynamics of a one-dimensional nearest neighbor model. Contemp. Math. 41 (1985) 329-342. | MR 814722 | Zbl 0572.60095
and .[18] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR 2063376 | Zbl 1070.60090
and .[19] Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. | Zbl 0742.76002
.[20] Random motions in random media. In Mathematical Statistical Physics 219-242. A. Bovier, F. Dunlop, F. den Hollander, A. van Enter and J. Dalibard (Eds). Les Houches, Session LXXXIII, 2005, Elsevier, 2005.
.[21] Multidimensional Diffusion Processes. Springer, Berlin-New York, 1979. | MR 532498 | Zbl 0426.60069
and .