Nous établissons dans ce papier des théorèmes limites pour des chaînes de Markov à espace d'état général sous des conditions impliquant l'ergodicité sous géométrique. Sous des conditions de dérive et de minorisation plus faibles que celles de Foster-Lyapounov, nous obtenons un théorème de limite centrale et un principe de déviation modérée pour des fonctionnelles additives non nécessairement bornées de la chaîne de Markov. La preuve repose sur la méthode de régénération et un contrôle précis du moment modulé de temps d'atteinte d'ensembles petits.
This paper studies limit theorems for Markov chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster-Lyapunov conditions. The regeneration-split chain method and a precise control of the modulated moment of the hitting time to small sets are employed in the proof.
@article{AIHPB_2008__44_2_239_0, author = {Douc, Randal and Guillin, Arnaud and Moulines, \'Eric}, title = {Bounds on regeneration times and limit theorems for subgeometric Markov chains}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {239-257}, doi = {10.1214/07-AIHP109}, mrnumber = {2446322}, zbl = {1176.60063}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_239_0} }
Douc, Randal; Guillin, Arnaud; Moulines, Eric. Bounds on regeneration times and limit theorems for subgeometric Markov chains. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 239-257. doi : 10.1214/07-AIHP109. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_239_0/
[1] The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 (1982) 283-289. | MR 664418 | Zbl 0476.60022
.[2] Moderate deviations for m-dependent random variables with Banach space values. Statist. Probab. Lett. 35 (1997) 123-134. | MR 1483265 | Zbl 0887.60010
.[3] Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139 (1999) xiv + 203. | MR 1491814 | Zbl 0952.60014
.[4] Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Statist. Probab. Lett. 55 (2001) 227-238. | MR 1867526 | Zbl 1078.60508
.[5] Moderate deviations for empirical measures of Markov chains: lower bounds. Ann. Probab. 25 (1997) 259-284. | MR 1428509 | Zbl 0877.60019
.[6] Moderate deviations for empirical measures of Markov chains: upper bounds. J. Theoret. Probab. 11 (1998) 1075-1110. | MR 1660920 | Zbl 0924.60051
and .[7] Moderate deviations for Markov chains with atom. Stochastic Process. Appl. 95 (2001) 203-217. | MR 1854025 | Zbl 1059.60029
and .[8] Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (2004) 1353-1377. | MR 2071426 | Zbl 1082.60062
, , and .[9] V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Statist. Probab. Lett. 49 (2000) 401-410. | MR 1796485 | Zbl 0981.60032
and .[10] Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen. 16 (1971) 660-675. | MR 293695 | Zbl 0259.60024
and .[11] Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 (2002) 224-247. | MR 1890063 | Zbl 1012.60062
and .[12] Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 (2001) 312-334. | MR 1888447 | Zbl 1127.60309
and .[13] Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28 (1992) 267-280. | Numdam | MR 1162575 | Zbl 0751.60009
.[14] Markov Chains and Stochastic Stability. Springer, London, 1993. | MR 1287609 | Zbl 0925.60001
and .[15] General Irreducible Markov Chains and Non-Negative Operators. Cambridge University Press, 1984. | MR 776608 | Zbl 0551.60066
.[16] The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 (1983) 295-311. | MR 711187 | Zbl 0532.60060
and .[17] Bounds on regeneration times and convergence rates for Markov chains. Stochastic Process. Appl. 80 (1999) 211-229. | MR 1682243 | Zbl 0961.60066
and .[18] Subgeometric rates of convergence of f-ergodic Markov chains. Adv. in Appl. Probab. 26 (1994) 775-798. | MR 1285459 | Zbl 0803.60061
and .