Soit le mouvement Brownien fractionnaire de paramètre . Lorsque , nous considérons des équations de diffusion de la forme Nous proposons dans des modèles particuliers où, ou et ou , un théorème central limite pour des estimateurs de et de , obtenus par une méthode de régression. Ensuite, pour ces modèles, nous proposons des tests d’hypothèses sur . Enfin, dans les modèles plus généraux ci-dessus nous proposons des estimateurs fonctionnels pour la fonction dont les propriétés sont obtenues via la convergence de fonctionnelles des accroissements doubles du mBf.
Let be the fractional brownian motion with parameter . When , we consider diffusion equations of the type In different particular models where or and or , we propose a central limit theorem for estimators of and of based on regression methods. Then we give tests of the hypothesis on for these models. We also consider functional estimation on in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.
@article{AIHPB_2008__44_2_191_0, author = {Berzin, Corinne and Le\'on, Jos\'e Rafael}, title = {Estimation in models driven by fractional brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {191-213}, doi = {10.1214/07-AIHP105}, mrnumber = {2446320}, zbl = {pre05611436}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_191_0} }
Berzin, Corinne; León, José R. Estimation in models driven by fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 191-213. doi : 10.1214/07-AIHP105. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_191_0/
[1] Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257-270. | MR 1416866 | Zbl 0885.60018
and .[2] Convergence in fractional models and applications. Electron. J. Probab. 10 (2005) 326-370. | MR 2120247 | Zbl 1070.60022
and .[3] Estimating the Hurst parameter. Stat. Inference Stoch. Process. 10 (2007) 49-73. | MR 2269604 | Zbl 1110.62110
and .[4] Stock price returns and the Joseph effect: A fractional version of the Black-Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) 327-351. Switzerland. | MR 1360285 | Zbl 0827.60021
, and .[5] Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. | MR 1677455 | Zbl 0924.60034
and .[6] Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 143-172. | MR 2078541 | Zbl 1065.62179
and .[7] Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (1999) 1021-1028. | MR 1486738 | Zbl 0915.34054
and .[8] Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR 1382288 | Zbl 0886.60076
.[9] Differential equations driven by rough signals, I: An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994) 451-464. | MR 1302388 | Zbl 0835.34004
.[10] Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | MR 242239 | Zbl 0179.47801
and .[11] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2001) 55-81. | MR 1893308 | Zbl 1018.60057
and .