Dans ce papier nous démontrons la propriété LAMN pour le modèle statistique constitué par l’observation des moyennes locales d’une diffusion . Nos données sont définies comme avec et le paramètre inconnu apparaît seulement dans le coefficient de diffusion du processus . Bien que cette observation ne soit ni gaussienne ni markovienne nous pouvons, par le calcul de Malliavin, obtenir une expression pour la log-vraisemblance du modèle. Nous sommes alors capables de calculer l’information asymptotique et montrons qu’elle est la même que pour l’observation ponctuelle de la diffusion.
In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the observation of local means of a diffusion process . Our data are given by for and the unknown parameter appears in the diffusion coefficient of the process only. Although the data are neither markovian nor gaussian we can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the asymptotic expansion. We actually find that the asymptotic information of this model is the same one as for a usual discrete sampling of .
@article{AIHPB_2008__44_1_104_0, author = {Gloter, Arnaud and Gobet, Emmanuel}, title = {LAMN property for hidden processes : the case of integrated diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {44}, year = {2008}, pages = {104-128}, doi = {10.1214/07-AIHP111}, mrnumber = {2451573}, zbl = {1182.62170}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_1_104_0} }
Gloter, Arnaud; Gobet, Emmanuel. LAMN property for hidden processes : the case of integrated diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 104-128. doi : 10.1214/07-AIHP111. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_1_104_0/
Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 167-241. | MR 1841412 | Zbl 0983.60028
and .The fast climate fluctuations during the stadial and interstadial climate states. Ann. Glaciology 35 (2002) 457-462.
, and .Inference for observations of integrated diffusion processes. Scand. J. Statist. 31 (2004) 417-429. | MR 2087834 | Zbl 1062.62157
and .On estimating the diffusion coefficient. J. Appl. Probab. 24 (1987) 105-114. | MR 876173 | Zbl 0615.62109
.On the estimation of the diffusion coefficient for multi-dimensional processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 119-151. | Numdam | MR 1204521 | Zbl 0770.62070
and .Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5 (1999) 855-872. | MR 1715442 | Zbl 0942.62096
, and .Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM Probab. Statist. 4 (2000) 205-227. | Numdam | MR 1808927 | Zbl 1043.62070
.Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics 35 (2001) 225-243. | MR 1925514 | Zbl 0980.62072
.Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probab. Statist. 5 (2001) 225-242. | Numdam | MR 1875672 | Zbl 1008.60089
and .Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7 (2001) 899-912. | MR 1873834 | Zbl 1003.60057
.LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 711-737. | Numdam | MR 1931584 | Zbl 1018.60076
.Criteria of positivity for the density of a Wiener functional. Bull. Sci. Math. 121 (1997) 261-273. | MR 1456283 | Zbl 0882.60082
and .Properties of the set of positivity for the density of a regular Wiener functional. Bull. Sci. Math. 122 (1998) 1-15. | MR 1617582 | Zbl 0897.60060
and .Statistical Estimation. Asymptotic Theory. Springer-Verlag, New York-Berlin, 1981. (Translated from the Russian by Samuel Kotz.) | MR 620321 | Zbl 0467.62026
and .On continuous conditional Gaussian martingales and stable convergence in law. In Séminaire de probabilité XXXI, 232-246. Lecture Notes in Math. 1655. Springer, Berlin, 1997. | Numdam | MR 1478732 | Zbl 0884.60038
.On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā Ser. A 44 (1982) 173-212. | MR 688800 | Zbl 0584.62042
.Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhyā Ser. A 45 (1983) 66-87. | MR 749355 | Zbl 0574.62035
.Lower bounds for densities of uniformly elliptic random variables on Wiener space. Probab. Theory Related Fields 126 (2003) 421-457. | MR 1992500 | Zbl 1022.60056
.Mathematics of Random Phenomena. Random Vibrations of Mechanical Structures. D. Reidel Publishing Co., Reidel, Dordrecht, 1986. | MR 873731 | Zbl 0628.73099
and .Stochastic differential equations and stochastic flows of diffeomorphisms. École d'été de probabilités de Saint-Flour, XII - 1982, 143-303. Lecture Notes in Math. 1097. Springer, Berlin, 1984. | MR 876080 | Zbl 0554.60066
.Asymptotics in Statistics. Some Basic Concepts, 2nd edition. Springer-Verlag, New York, 2000. | MR 1784901 | Zbl 0952.62002
and .The Malliavin Calculus and Related Topics. Probability and Its Application. Springer-Verlag, New-York, 1995. | MR 1344217 | Zbl 0837.60050
.Analysis on Wiener space and anticipating stochastic calculus. Lectures on Probability Theory and Statistics (Saint-Flour, 1995), 123-227. Lecture Notes in Math. 1690. Springer, Berlin, 1998. | MR 1668111 | Zbl 0915.60062
.Statistical Inference for Diffusion Type Processes. Edward Arnold, London; Oxford University Press, New York, 1999. | MR 1717690 | Zbl 0952.62077
.Continuous Martingales and Brownian Motion, 3rd edition. Springer-Verlag, Berlin, 1999. | MR 1725357 | Zbl 0917.60006
and .