A superprocess involving both branching and coalescing
Zhou, Xiaowen
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007), p. 599-618 / Harvested from Numdam
@article{AIHPB_2007__43_5_599_0,
     author = {Zhou, Xiaowen},
     title = {A superprocess involving both branching and coalescing},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {43},
     year = {2007},
     pages = {599-618},
     doi = {10.1016/j.anihpb.2006.09.004},
     mrnumber = {2347098},
     zbl = {1126.60086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_5_599_0}
}
Zhou, Xiaowen. A superprocess involving both branching and coalescing. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 599-618. doi : 10.1016/j.anihpb.2006.09.004. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_5_599_0/

[1] R. Arratia, Coalescing Brownian motions on the line, Ph.D. thesis, University of Wisconsin, Madison, 1979.

[2] R.W.R. Darling, Isotropic stochastic flows: a survey, in: Pinsky M., Wihstutz M. (Eds.), Diffusion Processes and Related Problems in Analysis, vol. 2, Birkhäuser, Boston, 1992, pp. 75-94. | MR 1187986 | Zbl 0751.60058

[3] D.A. Dawson, Z.H. Li, Construction of immigration superprocesses with dependent spatial motion from one-dimensional excursions, Probab. Theory Related Fields 127 (1) (2003) 37-61. | MR 2006230 | Zbl 1038.60082

[4] D.A. Dawson, Z.H. Li, H. Wang, Superprocesses with dependent spatial motion and general branching densities, Electron. J. Probab. 6 (25) (2001) 1-33. | MR 1873302 | Zbl 1008.60093

[5] D.A. Dawson, Z.H. Li, X. Zhou, Superprocesses with coalescing Brownian spatial motion as large scale limits, J. Theoret. Probab. 17 (3) (2004) 673-692. | MR 2091555 | Zbl 1067.60085

[6] A.M. Etheridge, An Introduction to Superprocesses, University Lecture Series, vol. 20, Amer. Math. Soc., 2000. | MR 1779100 | Zbl 0971.60053

[7] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049

[8] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987. | MR 959133 | Zbl 0635.60021

[9] O. Kallenberg, Random Measures, Academic Press, New York, 1976. | MR 431373 | Zbl 0345.60032

[10] Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab. 32 (2) (2005) 1247-1315. | MR 2060298 | Zbl 1065.60066

[11] Z. Ma, K. Xiang, Superprocesses of stochastic flows, Ann. Probab. 29 (1) (2001) 317-343. | MR 1825152 | Zbl 1015.60063

[12] E. Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions, in: Lectures on Probability Theory and Statistics, Saint-Flour, 1999, Lecture Notes in Math., vol. 1781, Springer, Berlin, 2002, pp. 125-329. | Zbl 1020.60075

[13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1991. | MR 1083357 | Zbl 0731.60002

[14] G. Skoulakis, R.J. Adler, Superprocesses over a stochastic flow, Ann. Appl. Probab. 11 (2) (2002) 488-543. | MR 1843056 | Zbl 1018.60052

[15] F. Soucaliuc, B. Tóth, W. Werner, Reflection and coalescence between independent one-dimensional Brownian paths, Ann. Inst. H. Poincaré Probab. Statist. 36 (4) (2000) 509-545. | Numdam | MR 1785393 | Zbl 0968.60072

[16] B. Tóth, W. Werner, The True self-repelling motion, Probab. Theory Related Fields 111 (3) (1997) 375-452. | MR 1640799 | Zbl 0912.60056

[17] R. Tribe, The behavior of superprocesses near extinction, Ann. Probab. 20 (1) (1992) 286-311. | MR 1143421 | Zbl 0749.60046

[18] J. Xiong, X. Zhou, On the duality between coalescing Brownian motions, Canad. J. Math. 57 (1) (2005) 204-224. | MR 2113855 | Zbl 1063.60118