@article{AIHPB_2007__43_4_461_0, author = {Dembo, Amir and Deuschel, Jean-Dominique}, title = {Aging for interacting diffusion processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {43}, year = {2007}, pages = {461-480}, doi = {10.1016/j.anihpb.2006.07.001}, mrnumber = {2329512}, zbl = {1117.60088}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_4_461_0} }
Dembo, Amir; Deuschel, Jean-Dominique. Aging for interacting diffusion processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 461-480. doi : 10.1016/j.anihpb.2006.07.001. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_4_461_0/
[1] Aging and spin-glass dynamics, in: Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 3-14. | MR 1957514 | Zbl 1009.82017
,[2] Out of equilibrium dynamics in spin-glasses and other glassy systems, in: (Ed.), Spin Glass Dynamics and Random Fields, World Scientific, 1997.
, , , ,[3] Parabolic Anderson problems and intermittency, Mem. Amer. Math. Soc. 108 (1994). | MR 1185878 | Zbl 0925.35074
, ,[4] Dynamics of glassy systems, in: Lecture Notes in Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter, Les Houches, 2002, Session 77.
,[5] Off equilibrium dynamics and aging in unfrustrated systems, J. Phys. I (France) 4 (1994) 1691.
, , ,[6] Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1) (1999) 181-232. | MR 1681641 | Zbl 0922.60060
,[7] Algebraic -decay of attractive critical processes on the lattice, Ann. Probab. 22 (1994) 264-283. | MR 1258877 | Zbl 0811.60089
,[8] The random walk representation for interacting diffusion processes, in: , (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 378-391. | MR 2118583 | Zbl 1111.82049
,[9] On estimating the derivatives of symmetric diffusions in stationary environment with applications to ∇φ interface models, Probab. Theory Related Fields 133 (2005) 358-390. | Zbl 1083.60082
, ,[10] J.-D. Deuschel, T. Nishikawa, The dynamic of entropic repulsion, Stochastic Process. Appl. (2006), in press. | MR 2320950 | Zbl 1112.60077
[11] Bismut-Elworthy's formula and random walk representation for SDEs with reflection, Stochastic Process. Appl. 115 (2005) 907-925. | Zbl 1071.60044
, ,[12] Viscoelastic Properties of Polymers, Wiley, New York, 1980.
,[13] On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems, Comm. Math. Phys. 81 (1981) 277-298. | MR 632763
, ,[14] Stochastic interface models, in: Ecole d'été de probabilités de Saint Flour XXXIII - 2003, Lecture Notes in Mathematics, vol. 1869, Springer-Verlag, Berlin, 2005, pp. 105-274. | Zbl 1119.60081
,[15] Motion by mean curvature from the Ginzburg-Landau ∇φ interface models, Comm. Math. Phys. 185 (1997) 1-36. | Zbl 0884.58098
, ,[16] Equilibrium fluctuations for ∇φ interface model, Ann. Probab. 29 (2001) 1138-1172. | Zbl 1017.60100
, , ,[17] Renormalization and universality for multiple population models, in: , (Eds.), Interacting Stochastic Systems, Springer, Berlin, 2005, pp. 209-267. | MR 2118576 | Zbl 1078.92065
,[18] On the correlation for Kac-like models in the convex case, J. Stat. Phys. 74 (1/2) (1994) 349-409. | MR 1257821 | Zbl 0946.35508
, ,[19] Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics, 1987. | MR 1026102 | Zbl 0992.82500
, , ,[20] A general central limit theorem for FKG systems, Comm. Math. Phys. 91 (1983) 75-80. | MR 719811 | Zbl 0528.60024
,[21] Hydrodynamic limit for the Ginsburg-Landau ∇φ interface model with a conservation law, J. Math. Sci. Univ. Tokyo 9 (2002) 481-519. | Zbl 1012.60089
,[22] Physical Aging in Amorphous Polymers and other Materials, Elsevier, London, 1976.
,