@article{AIHPB_2007__43_4_399_0,
author = {Agrachev, Andrei A. and Kuksin, S. and Sarychev, A. and Shirikyan, A.},
title = {On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
volume = {43},
year = {2007},
pages = {399-415},
doi = {10.1016/j.anihpb.2006.06.001},
zbl = {pre05171264},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_4_399_0}
}
Agrachev, A.; Kuksin, S.; Sarychev, A.; Shirikyan, A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 399-415. doi : 10.1016/j.anihpb.2006.06.001. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_4_399_0/
[1] , , Navier-Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (1) (2005) 108-152. | Zbl 1075.93014
[2] , , Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Comm. Math. Phys. 265 (2006) 673-697. | Zbl 1105.93008
[3] , Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. | MR 1642391 | Zbl 0938.28010 | Zbl 0913.60035
[4] , , Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal. 9 (1) (1998) 27-64. | MR 1644120 | Zbl 0928.60040
[5] , , Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988. | Zbl 0687.35071
[6] , , The stochastic wave equation in two spatial dimensions, Ann. Probab. 26 (1) (1998) 187-212. | MR 1617046 | Zbl 0938.60046
[7] , Zero one laws for probability measures on locally convex spaces, Math. Ann. 243 (2) (1979) 95-102. | MR 543719 | Zbl 0393.60030
[8] , , Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219 (2001) 523-565. | MR 1838749 | Zbl 0983.60058
[9] , An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, New York, 1971. | MR 270403 | Zbl 0219.60003
[10] , Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1 (1994) 403-426. | Zbl 0820.35108
[11] , , The Theory of Stochastic Processes. I, Springer-Verlag, Berlin, 1980. | MR 636254 | Zbl 0531.60001
[12] , Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
[13] , Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. | MR 610244 | Zbl 0456.35001
[14] , Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.) 117 (159) (1982) 359-378, 431. | MR 648413 | Zbl 0501.35046
[15] , , , The stochastic Burgers equation: finite moments and smoothness of the density, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (3) (2000) 363-385. | MR 1811248 | Zbl 0968.60057
[16] , , Malliavin calculus for the stochastic 2D Navier-Stokes equation, Comm. Pure Appl. Math. 59 (12) (2006) 1742-1790. | Zbl 1113.60058
[17] , The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995. | MR 1344217 | Zbl 0837.60050
[18] , Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal. 79 (2) (1988) 288-331. | MR 953905 | Zbl 0653.60046
[19] , Lectures on Differential Geometry, Chelsea Publishing Co., New York, 1983. | MR 891190 | Zbl 0518.53001
[20] , Navier-Stokes Equations, North-Holland, Amsterdam, 1979. | Zbl 0426.35003
[21] , , Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. | Zbl 0688.35077