@article{AIHPB_2007__43_3_299_0,
author = {Rivero, V\'\i ctor},
title = {Sina\v\i 's condition for real valued L\'evy processes},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
volume = {43},
year = {2007},
pages = {299-319},
doi = {10.1016/j.anihpb.2006.03.004},
zbl = {1115.60049},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_3_299_0}
}
Rivero, Víctor. Sinaǐ's condition for real valued Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 299-319. doi : 10.1016/j.anihpb.2006.03.004. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_3_299_0/
[1] , , , , , A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett. 56 (4) (2002) 399-404. | MR 1898718 | Zbl 0997.60047
[2] , Lévy Processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. | MR 1406564 | Zbl 0861.60003
[3] , , Cramér's estimate for Lévy processes, Statist. Probab. Lett. 21 (5) (1994) 363-365. | MR 1325211 | Zbl 0809.60085
[4] , , , Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003
[5] , On moments of ladder height variables, Adv. Appl. Math. 7 (1) (1986) 46-54. | MR 834219 | Zbl 0598.60079
[6] F. De Weert, Attraction to stable distributions for Lévy processes at zero, Technical report, University of Manchester, 2003.
[7] , Fluctuation theory for Lévy processes, in: Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, pp. 57-66. | MR 1833692 | Zbl 0982.60048
[8] , , Stability of the overshoot for Lévy processes, Ann. Probab. 30 (1) (2002) 188-212. | MR 1894105 | Zbl 1016.60052
[9] , Some limit theorems for sums of independent random quantities with infinite mathematical expectations, Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955) 247-266. | MR 76214 | Zbl 0068.12402
[10] , The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973) 371-381, (1974). | MR 336806 | Zbl 0304.60016
[11] , Sample functions of stochastic processes with stationary, independent increments, in: Advances in Probability and Related Topics, vol. 3, Dekker, New York, 1974, pp. 241-396. | MR 400406 | Zbl 0309.60047
[12] , , Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete 18 (1971) 167-182. | MR 292163 | Zbl 0197.44204
[13] , , Regular Variation, Extensions and Tauberian Theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam, 1987. | MR 906871 | Zbl 0624.26003
[14] , , The Theory of Stochastic Processes. II, Die Grundlehren der Mathematischen Wissenschaften, vol. 218, Springer-Verlag, New York, 1975, Translated from the Russian by Samuel Kotz. | MR 375463 | Zbl 0305.60027
[15] , , , Harmonic renewal measures, Z. Wahrsch. Verw. Gebiete 59 (3) (1982) 391-409. | MR 721635 | Zbl 0465.60079
[16] , Tail behaviour of ladder-height distributions in random walks, J. Appl. Probab. 22 (3) (1985) 705-709. | MR 799293 | Zbl 0574.60075
[17] , The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970) 1173-1205. | MR 266315 | Zbl 0233.60062
[18] , Subexponential distributions and integrated tails, J. Appl. Probab. 25 (1) (1988) 132-141. | MR 929511 | Zbl 0651.60020
[19] , , , Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab. 14 (4) (2004) 1766-1801. | MR 2099651 | Zbl 1066.60049
[20] , Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Verojatnost. i Primenen. 16 (1971) 539-613. | MR 290473 | Zbl 0269.60053
[21] , Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. | MR 1739520 | Zbl 0973.60001
[22] , Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic Processes Appl. 5 (1) (1977) 27-37. | Zbl 0353.60073
[23] V. Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf, PhD thesis, Université Louis Pasteur, 2002.
[24] , Votre Lévy rampe-t-il ?, J. London Math. Soc. (2) 65 (1) (2002) 243-256. | MR 1875147 | Zbl 1016.60054