Heat flow, brownian motion and newtonian capacity
Van den Berg, M.
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007), p. 193-214 / Harvested from Numdam
@article{AIHPB_2007__43_2_193_0,
     author = {Van den Berg, M.},
     title = {Heat flow, brownian motion and newtonian capacity},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {43},
     year = {2007},
     pages = {193-214},
     doi = {10.1016/j.anihpb.2006.03.005},
     mrnumber = {2303119},
     zbl = {1116.35053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_2_193_0}
}
Van den Berg, M. Heat flow, brownian motion and newtonian capacity. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 193-214. doi : 10.1016/j.anihpb.2006.03.005. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_2_193_0/

[1] M. Van Den Berg, Asymptotics of the heat exchange, J. Funct. Anal. 206 (2004) 379-390. | MR 2021852 | Zbl 1036.35063

[2] M. Van Den Berg, On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals, J. Funct. Anal. 222 (2005) 114-128. | MR 2129767 | Zbl 1077.60056

[3] M. van den Berg, On the volume of intersection of three independent Wiener sausages, in preparation. | Zbl 1201.35108

[4] J.-F. Le Gall, Sur une conjecture de M. Kac, Probab. Theory Relat. Fields 78 (1988) 389-402. | MR 949180 | Zbl 0655.60067

[5] J.-F. Le Gall, Wiener sauasage and self-intersection local times, J. Funct. Anal. 88 (1990) 299-341. | MR 1038444 | Zbl 0697.60081

[6] J.-F. Le Gall, Some properties of planar Brownian motion, in: École d'Été de Probabilités de Saint-Flour XX 1990, Lecture Notes in Mathematics, vol. 1527, Springer, Berlin, 1992, pp. 111-235. | MR 1229519 | Zbl 0779.60068

[7] A. Joffe, Sojourn time for stable processes, Thesis, Cornell University, 1959.

[8] S.C. Port, Hitting times for transient stable processes, Pacific J. Math. 21 (1967) 161-165. | MR 208681 | Zbl 0154.18904

[9] S.C. Port, Hitting times and potentials for recurrent stable processes, J. Anal. Math. 20 (1967) 371-395. | MR 217877 | Zbl 0157.24702

[10] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978. | MR 492329 | Zbl 0413.60067

[11] S.C. Port, Asymptotic expansions for the expected volume of a stable sausage, Ann. Probab. 18 (1990) 492-523. | MR 1055417 | Zbl 0705.60061

[12] F. Spitzer, Electrostatic capacity, heat flow and Brownian motion, Z. Wahrsch. Verw. Geb. 3 (1964) 110-121. | MR 172343 | Zbl 0126.33505

[13] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer-Verlag, Berlin, 1998. | MR 1717054 | Zbl 0973.60003