Besov regularity for the generalized local time of the indefinite Skorohod integral
Liang, Zongxia
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007), p. 77-86 / Harvested from Numdam
@article{AIHPB_2007__43_1_77_0,
     author = {Liang, Zongxia},
     title = {Besov regularity for the generalized local time of the indefinite Skorohod integral},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {43},
     year = {2007},
     pages = {77-86},
     doi = {10.1016/j.anihpb.2006.01.001},
     mrnumber = {2288270},
     zbl = {1115.60060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_1_77_0}
}
Liang, Zongxia. Besov regularity for the generalized local time of the indefinite Skorohod integral. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 77-86. doi : 10.1016/j.anihpb.2006.01.001. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_1_77_0/

[1] M.T. Barlow, M. Yor, Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times, J. Funct. Anal. 49 (1982) 198-229. | Zbl 0505.60054

[2] J. Bergh, J. Löfström, Interpolation Spaces - An Introduction, Springer-Verlag, World Publishing Corp., 1976, 2003. | Zbl 0344.46071

[3] A. Berkaoui, Y. Ouknine, Régularité Besov des trajectoires du processus intégral de Skorohod, Bull. Sci. Math. 123 (1999) 643-663. | MR 1725208

[4] B. Boufoussi, B. Roynette, Le temps local brownien appartient p.s. l’espace de Besov B p,α 1/2 , C. R. Acad. Sci. Paris Ser. I Math. 316 (1993) 843-848. | MR 1218273 | Zbl 0788.46035

[5] Z. Ciesielski, G. Kerkyacharian, B. Roynette, Quelques espaces fonctionnels associés des processus gaussiens, Studia Math. 107 (1993) 171-204. | MR 1244574 | Zbl 0809.60004

[6] D. Geman, J. Horowitz, Occupation densities, Ann. Probab. 8 (1980) 1-67. | MR 556414 | Zbl 0499.60081

[7] P. Imkeller, Occupation densities for stochastic integral processes in the second Wiener chaos, Probab. Theory Related Fields 91 (1992) 1-24. | MR 1142759 | Zbl 0744.60055

[8] P. Imkeller, D. Nualart, Integration by parts on Wiener space and the existence of occupation densities, Ann. Probab. 22 (1994) 469-493. | MR 1258887 | Zbl 0803.60049

[9] H. Lakhel, Y. Ouknine, C.A. Tudor, Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case, Stochastics Stochastics Rep. 74 (2002) 597-615. | MR 1943581 | Zbl 1010.60048

[10] Z. Liang, Besov-regularity of local times of some semimartingales, Preprint, 2005.

[11] P. Malliavin, Stochastic Analysis, Grundlehren Math. Wiss., vol. 313, Springer-Verlag, Berlin, 1997, (xii+343 pp.). | MR 1450093 | Zbl 0878.60001

[12] D. Nualart, The Malliavin Calculus and Related Topics, Probab. Appl., Springer-Verlag, New York, 1995, (xii+266 pp.). | MR 1344217 | Zbl 0837.60050

[13] D. Nualart, Y. Ouknine, Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter H>1 2, J. Theoret. Probab. 16 (2003) 451-470. | MR 1982038 | Zbl 1027.60052

[14] C.A. Tudor, Martingale-type stochastic calculus for anticipating integral processes, Bernoulli 10 (2004) 313-325. | MR 2046776 | Zbl 1062.60055

[15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | MR 503903 | Zbl 0387.46032

[16] Y. Xiao, T. Zhang, Local times of fractional Brownian sheets, Probab. Theory Related Fields 124 (2002) 204-226. | MR 1936017 | Zbl 1009.60024